
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Handling Axiomatic Memory Models in
Abstraction-Based Model Checking of
Concurrent and Distributed Systems

Master’s Thesis

Author Advisor
Levente Bajczi Dr. Vince Molnár

May 29, 2022

HALLGATÓI NYILATKOZAT

Alulírott Bajczi Levente, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem
engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakiro-
dalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos
értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával
megjelöltem.
Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2022. május 29.

Bajczi Levente
hallgató

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Safety-Critical Systems . 3
2.2 Formal Software Verification . 4

2.2.1 Bounded Model Checking (BMC) . 7
2.2.2 Counterexample-Guided Abstraction Refinement (CEGAR) 8

2.2.2.1 A Generic CEGAR Loop 8
2.2.2.2 CEGAR Configuration Options 9
2.2.2.3 BMC Inside CEGAR . 13

2.3 Multi-Processor Architectures . 13
2.3.1 Memory Consistency Models . 13

2.3.1.1 Event Sets, Relations and Constraints 14
2.4 Analysis of Multi-Threaded Programs . 16

2.4.1 Interleaving Semantics . 16
2.4.2 Declarative Semantics . 18
2.4.3 Multi-Threaded CFA . 18

3 State of the Art 20
3.1 Sequentially Ordered Concurrency . 20
3.2 Weakly Ordered Concurrency . 20

3.2.1 Herd . 21
3.2.2 Rcmc . 22

3.2.2.1 GenMC . 23
3.2.3 Dartagnan . 24

4 SMT-Based Verification over Declarative Semantics 25
4.1 Representing the Input Program . 25

4.1.1 Parsing C Programs . 27
4.1.2 Parsing Litmus Tests . 27

4.2 Representing the Memory Model . 28
4.3 Implementing the Core Algorithm . 29

4.3.1 Overview of the Approach . 29
4.3.2 Encoding Control and Data Flow . 29
4.3.3 Encoding the Memory Model . 31
4.3.4 Enumerating Solutions . 32

4.4 Encoding Well-Formedness Constraints . 32
4.5 Providing a User Interface . 34
4.6 Verifying the Implementation . 35

5 Abstraction-Based State Space Exploration over Declarative Semantics 36
5.1 High-Level Overview . 36
5.2 Representative Example . 37
5.3 Formalization . 39

5.3.1 Data Structures . 40
5.3.2 Algorithms . 40

5.3.2.1 Overview . 40
5.3.2.2 Abstract . 41
5.3.2.3 ExtractCex . 42
5.3.2.4 Concretizable . 42
5.3.2.5 Refine . 42

5.4 Proof of Concept Implementation . 43

6 Applying Memory Models on Communication Protocols 44
6.1 Defining the Scope . 44

6.1.1 Communication Behavior Patterns 44
6.2 Modeling Behaviour Patterns . 45

6.2.1 Reordering Messages . 46
6.2.2 Duplicating Messages . 46
6.2.3 Losing Messages . 47
6.2.4 Broadcasting Messages . 47
6.2.5 Sending Synchronously . 47
6.2.6 Blocking Reception . 47

6.3 Extending the Standard Model . 48
6.4 Applicability of the Approach . 48

6.4.1 User Datagram Protocol (UDP) . 48
6.4.2 Transmission Control Protocol (TCP) 50

7 Conclusion 52

List of Figures 54

Bibliography 54

Kivonat

A kritikus hardver-szoftver rendszerek formális verifikációja egyre több területen elvárás.
Emberéletek múlnak programok hibamentességén, és emiatt teljesen biztosnak kell lennünk
abban, hogy soha nem fognak meghibásodni.

A gyengén rendezett kommunikációs formák jelentik az egyik legnagyobb problémát,
amivel a state-of-the-art verifikációs eszközök is küzdenek. A látszólag tetszőleges átrende-
ződések kezelhetetlenül naggyá teszik az állapotteret a konvencionális eszközök számára.

Jelen dolgozatomban egy áttekintő elemzést nyújtok a párhuzamosság hatékony ke-
zelésére képes verifikációs eszközökről, mind a szekvenciális, mind a gyengén rendezett
esetben (1). Implementálom az egyik legjobban teljesítő eszköz algoritmusát a Theta ke-
retrendszerben, melyet a Kritikus Rendszerek Kutatócsoport fejleszt és tart karban (2).
Továbbá javasolok egy olyan megközelítést, mellyel a gyakorlatilag végtelen állapotterű
bemeneteket is hatékonyan lehet kezelni, valamint implementálom az algoritmus fő lépé-
seit (3). Végezetül, alkalmazom a memóriamodellezési elveket üzenetalapú kommunikációs
protokollok modellezésére, ezzel kiterjesztve a fent bemutatott algoritmusok és megközelí-
tések használhatóságát (4).

i

Abstract

Formal verification of hardware-software critical systems is a necessity for an increasing
number of applications. We trust the lives of people on the safety of computer software,
and we have to be absolutely certain they will never fail.
One of the problems state-of-the-art verification tools struggle with is weakly ordered
models of communication, both in the case of shared memory concurrency and distributed
systems. The seemingly arbitrary reordering of accesses makes the state space unmanage-
ably large for conventional approaches.
In this thesis, I survey the landscape of verification tools capable of performantly handling
parallelism, both in the case of sequential consistency as well as weak memory ordering
(1). I implement one of the best approaches in the verification framework Theta, a tool
maintained by the Critical Systems Research Group (2). Furthermore, I propose a novel
approach for handling practically infinite-state inputs for the weakly ordered memory
models, and I create a proof-of-concept implementation of the main parts of the algorithm
(3). Finally, I apply the memory modeling principles to message-based communication
protocols, thereby widening the applicability of the algorithms and approaches shown
before (4).

ii

Chapter 1

Introduction

Safety critical hardware-software systems surround us in our daily lives. We rely on elec-
tronic brake systems to always slow down vehicles, automated power station management
to never leave us without power and advanced collision avoidance systems to ensure no
human error can lead to aviation catastrophes. However, developers of such systems can
still be expected to make some mistakes, which could lead to faults causing many people
to lose their lives or suffer outstanding monetary damages. The solution to this problem
is tightly controlled quality assurance protocols, one part of which is to verify that the
system will never find itself in an unsafe state under certain circumstances.
There are many methods of verifying safety. In the recent past, the most prominent
technique has been testing, i.e., playing out scenarios with the system under test and
comparing its responses to predetermined ones. While effective at catching common bugs,
it is almost never exhaustive, meaning a proof of safety cannot be created via testing. In
the scope of this paper, I deal with formal verification, which is a mathematically precise
way of reasoning about a system’s behavior. It is capable of both reporting bugs and
capturing a proof a safety, but its performance overhead has been prohibitive of its use in
the past. However, with the ever-growing pool of compute resources and the advancement
of verification algorithms, its industrial use is starting to take hold and slowly replace (or
at least complement) testing.
One of the techniques employed by formal verification is model checking [19], which uses
a formal representation (a model), and by enumerating all its reachable states from some
initial configuration, reason about its unsafe states. This method would solve all verifi-
cation problems, as having access to the network of reachable states, any property over
the state space would be trivial to check. However, in a general sense, this problem is
undecidable: e.g., there cannot exist an algorithm that would determine whether any pro-
gram terminates [42]. The discrepancy comes from the nature of the state space: it is not
guaranteed to be finite, and in most real life cases, even finite-state systems have unman-
ageably large state spaces. Consider a simple program having two 32-bit integer variables.
As each variable could have a possible 232 different values, the size of the state space of the
program would be 232+32, which would take up at least 18 exabytes of space given a very
efficient 1 byte-per-state data structure. This phenomenon is called state space explosion
[20], and most development effort towards model checking concentrates on the solution to
this problem.
One possible solution to state space explosion is to employ abstraction, which partitions the
concrete state space into groups that behave similarly. Using this method, the state space
can become manageable and therefore verification may be feasible. However, the level of

1

abstraction has to be fine-tuned so that it allows the efficient verification of the system
while preserving enough information to not produce false alarms – which might be provided
by a continuously refined abstraction level in a solution such as the Counterexample-
Guided Abstraction Refinement (CEGAR) technique [18].
While abstraction solves many of the problems of conventional model checking, a new
source of complexity arises when asynchronous components work together in a system,
such as concurrent programs or distributed systems. Special techniques have to be em-
ployed to deal with this behavior, as the naive way of enumerating all interleavings of
the parallel components cause the state space the explode. While partial order reduction
(POR [26]) has been extensively used to combat this, recent work has shown that an
axiomatic approach [7] works better at exploring states of concurrent programs. This is
especially true for programs where memory access is not sequential by default, i.e., the
order of instructions need not reflect the order of their apparent effects. In this case, the
rules of the memory consistency model give the axioms, which guide the state exploration.
While many tools use the axiomatic approach to verify concurrent programs with weak
semantics [7, 32, 21], it is usually complemented by another well-established verification
technique such as stateless model checking [32], or bounded model checking [21]. However,
no such solution exists that combines axiomatic verification with abstraction-based model
checking – and furthermore, the aforementioned tools mainly concentrate on verifying
software, rather than general parallelised architectures such as distributed systems.
In this thesis, my presented contributions are as follows:

I I survey and present the state of the art concerning software verification over ax-
iomatic memory models

II I implement a customized version of the algorithm used by one of the best state-of-
the-art verification tools

III I develop and implement an effective, abstraction-based state space exploration tech-
nique for handling axiomatic verification of concurrent software

IV I show an application of the Cat [8] memory modeling language to network-based
communication protocols

The structure of the thesis is as follows: in Chapter 2 I introduce the necessary back-
ground the rest of this thesis builds upon. In Chapters 3-6, I elaborate on the four main
contributions of my thesis (see above). Finally, in Chapter 7 I conclude the thesis by
summarising its main points and observations.

2

Chapter 2

Background

This report builds upon the theories and findings of many fields of computer science,
including embedded programming, formal software verification, memory modeling, con-
current software design and distributed systems. Some of these fields view the same topics
slightly differently, e.g. software verification presumes a formal, mathematical model for
the input program, while embedded programmers usually use the much lower abstraction
level of source code to reason about properties of the software. This necessitates establish-
ing the basis of the presented work to prevent misunderstanding among experts in these
fields. This chapter introduces such concepts and defines their interpretation as used in
the context of this work.

2.1 Safety-Critical Systems

If a hardware-software system was designed for a small selection of well-defined tasks, it
is generally referred to as an embedded system. Such systems are not adept for general-
purpose use, as their in- and outputs are often limited, and their software is seldom
modifiable with the rare exception of program upgradability. Embedded systems can fulfil
many kinds of tasks, ranging from operating the electrical windows on a car to performing
complicated protocols for mid-air collision avoidance in airplanes (such as the Traffic Alert
and Collision Avoidance System, TCAS), or providing a safety shutoff system for a nuclear
plant.
Failure of an embedded system might be a minor nuisance or a serious safety problem,
depending on the context of the application. If an electrical window fails on a car, the
worst that can happen is some discomfort until the faulty unit is repaired or replaced –
but failure of the TCAS might result in the collision of two airplanes where hundreds of
lives are at risk. Any system that is designed to perform tasks where malfunction could
lead to harm (physical or monetary) is classified as a safety-critical system.
Depending on the level of tolerable risk, a safety-critical system can be classified, e.g.,
according to Safety Integrity Levels (SIL) [30]. Several qualitative and quantitative mea-
sures are in place in such standards to mitigate dangerous failures, such as a controlled
development workflow, thorough quality assurance and safety evaluation. For software
components, the most widely used technique to assess safety is testing, i.e. running the
program with defined sets of inputs and analyzing the outputs. This is not a definitive
proof, as for untested inputs we cannot evaluate the behavior, but if the testing method-
ology is thorough enough, we can qualify the software as probably safe for the desired

3

safety integrity level. To aid testing, formal methods such as model checking [19] (also see
Section 2.2) and formal test generation [16] can be used, which are often too complex to
be used on their own, but can support conventional testing methods.
With recent years’ advancements, even safety-critical systems reached the point where
scaling up in performance is next to impossible if only a single core is utilized [39]. The
next logical step is to introduce multi-processor chips that can use smarter workload
management to overcome the need for computing power. However, with multi-processor
architectures and multi-threaded programs, the complexity of embedded systems surpasses
the verification power of conventional testing, mainly due to the inherent nondeterminism
of multi-threaded programs. When a program is strictly run on a single-core processor, it
is relatively easy to guarantee that for a single set of inputs, the output of the program
will always be the same. Therefore, it is enough to test each input set once, and assess the
execution’s results. With multi-threaded programs, an otherwise deterministic program
can still produce different results based on timing differences among the processors, which
cause different sections of the program to overlap in execution. Hence, testing is even less
effective at proving safety, and a more formal method is often required.
A similar problem arises when instead of running on a multi-core processor, programs
offload certain tasks to other participants in some network. This is the model of distributed
systems, where in addition to the already high complexity of verifying separate subsystems
on their own, their cooperative behavior needs to be verified as well. In some aspects,
concurrent program execution and cooperative distributed systems operate under the same
pretenses, but the way information is exchanged among them is inherently different.

2.2 Formal Software Verification

Formal software verification is a way to mathematically prove or disprove certain properties
of an input program. Such properties might include memory safety (detecting use-after-
free and other memory allocation problems), reachability (detecting if an unsafe state is
reachable) or termination (detecting if the program will terminate in all its executions). In
the context of this work, safety properties are always assumed to be reachability related,
with a single unsafe state in the program.
Formal software verification often employs model checking [19], a technique that enumer-
ates states of the input program and reasons about the properties of the states. For
reachability-type queries, it is necessary to know whether the state marked as unsafe is
reachable from the initial state(s) within a finite number of steps – if such a path exists,
the program is deemed unsafe and safety cannot be guaranteed. In practice, generating
all states of an input model is often infeasible, as even a single 32-bit variable will create
232 different states according to its value. This phenomenon is called state space explosion
[20], and counteracting it is required for any practically useful model checking algorithm.
A theoretical problem that verification tools have to face is the inherent undecidability of
the model checking problem. Consider an arbitrary input program and an unsafe state
at its exit point. To prove the (un)reachability of said state, the program’s termination
property has to be decided – which is proven to be undecidable [42]. This means, that
any model checking algorithm will either be incomplete, i.e. some inputs will result in an
UNKNOWN classification, or will produce false results in the form of false alarms and
missed bugs.
A further problem of such algorithms is bridging the gap between the different abstraction
levels in the verification workflow. Embedded programs are usually written in C or a sim-

4

ilar high-level language, where concepts such as variable scopes, procedures and pointers
make the lives of programmers easier, abstracting away the single instructions that will be
generated by the compiler. However, the rich toolset of high-level languages greatly hinder
the reasoning power of any formal method, as a formal model of the language semantics
would be required. This is hard for some languages, and impossible to create for others:
e.g. in the case of C++, the grammar is undecidable, i.e. there cannot exist any program
that parses all C++-compliant code correctly1. To overcome these kinds of problems, the
input programs are first transformed into a formal model, which can be done separately,
as a pre-processing step, either by hand or in an automated way. However, it is important
to keep in mind that the verification result of the model checking algorithm will only be
valid for the formal model that served as its input, and not necessarily the source program
– for that, verifying the result against the program’s code might be necessary.
One such formalism is called a Control Flow Automaton (CFA) [13], which is mainly used
to model programs.

Definition 1 (Control Flow Automata). A control flow automaton is a tuple CFA =
(V, L, l0, E), where:

• V : A set of variables
• L: A set of locations, representing the program counter (PC) in the program
• l0 ∈ L: The initial location
• E ⊆ L×Ops× L: Directed edges in the CFA, describing the set of operations to be

executed when the program advances to a new location

– op ∈ Ops: An assumption of a predicate over V asserting its truth (i.e. an
execution is only legal if the predicate is fulfilled), or an assignment of a new
value to a v ∈ V . A special kind of assignment has the form havoc v, which
assigns a non-deterministic value to v. �

An execution of a CFA is a path over the directed edges E, starting from l0, where at least
one variable assignment exists that satisfies all assumptions of this path. Note that in the
CFA, we use non-constant variables, which means multiple values can be assigned to a
variable in a single execution. To keep track of variable values, indexed constants are used,
where the index is increased with each assignment to the same variable. Assumptions and
expressions always use the most recent indexed constant.
Consider the example in Figure 2.1. The program in Figure 2.1a reads a non-deterministic
number k, then does several calculations over the variables i, j, k that includes a potential
division-by-zero in line 9. This program is transformed into a CFA in Figure 2.1b, which
includes an error location Le that represents the division-by-zero case, and a final location
Lf which represents the successful termination of the program. An arbitrary path in this
CFA leading to Le is presented in Figure 2.1c, which also shows the use of indexed con-
stants. This format is called Static single assignment, as every indexed constant is assigned
exactly once, meaning each value is invariant throughout the execution. Figure 2.1d shows
the path feasibility query as a satisfiability formula, which can be given to an SMT-solver
that can determine whether the path is a legal execution. In the presented case, there is
a clear contradiction in the expressions over i[2]: if i[1] is 2 then i[2] := i[1] + 1 means
i[2] must be 3 – which contradicts the i[2] >= 10 assertion. This means the path is not a
feasible execution, and we have not yet determined the safety of the program.

1https://blog.reverberate.org/2013/08/parsing-c-is-literally-undecidable.html

5

https://blog.reverberate.org/2013/08/parsing-c-is-literally-undecidable.html

1 int i , j , k;
2 k = ioread32();
3 i = 2;
4 j = k + 5;
5 while (i < 10) {
6 i = i + 1;
7 j = j + 3;
8 }
9 k = k / (i − j);

(a) C program with pos-
sible div.-by-zero

Li

L1

L2 L3

L4 L5

L6

Le Lf

havoc k

i := 2
j := k + 5

[i < 10]

i := i+ 1

j := j + 3

[i >= 10]

[i = j] [i 6= j]

(b) Control Flow Automaton
for Figure 2.1a

Li

L1

L2 L3 L3

L4 L5

L6

Le

i[1] := 2

j[1] := k[0] + 5

[i[1] < 10]

i[2] := i[1] + 1

j[2] := j[1] + 3

[i[2] >= 10]

[i[2] = j[2]]

(c) Static single assignment form of
a path in Figure 2.1b

i[1] = 2 ∧ j[1] = k[0] + 5 ∧ i[1] < 10 ∧ i[2] = i[1] + 1 ∧ j[2] = j[1] + 3 ∧ i[2] >= 10 ∧ i[2] = j[2]

(d) SMT-expression of the path in Figure 2.1c

Figure 2.1: Mapping a program to a CFA

Note that while not explicitly shown, every havoc operation causes the index of the con-
stant to increase, but nothing gets assigned to this constant. This means that the solver is
free to choose any assignment, as long as it satisfies all other assertions that refer to this
constant. Also, note that the example CFA in Figure 2.1b is not a correct mapping of the
program in Figure 2.1a, as the values of the variables are entirely unbounded. This can be
problematic if a path is found where the SMT solver reports the query as satisfiable, while
in practice one of the variables would have wrapped around before reaching a value in
the counterexample, making the path infeasible. This is a well-known limitation of SMT-
based model checking, as fix-bit-width types cannot easily be mapped to mathematical
integers. In the context of this work, best-effort practices are performed to counteract this
phenomenon, namely, each havoc automatically implies an assumption over the variable’s
bounds (e.g. a C-like integer i will have an assumption that −(231) ≤ i ≤ 231 − 1); and
each unsigned integer type will wrap around when an out-of-bounds value is assigned to it,
using modular arithmetic (e.g. a simple addition of the unsigned variable u := u+1 will be
mapped to u := (u+1) mod 232). As signed overflow is undefined in the C standard (and
most other programming languages) [31], that case is unhandled and the values might fall
out-of-bounds. A correct solution to this problem is to use bitvector arithmetic instead
of integer arithmetic, but the implied performance overhead warrants the presented more
performant approximation.
As we saw in Figure 2.1, the arbitrarily chosen path was not a feasible execution. However,
that does not mean the program is safe – in fact, all paths would have to be checked first,
to see if any produce the undesired division-by-zero problem. It is easy to see that due
to the loop in the program, there are an infinite number of paths – to solve this model
checking problem in a finite amount of time, many different approaches exist, but most of
them fall into the following categories:

• Bounded Model Checking (BMC) – Starting from the initial state(s), check if an
unsafe state is reachable within an expanding number of steps [15]

• k-Induction – Starting from the unsafe state(s), check if a safe state can be an
expanding number of steps before any of the unsafe states [23]

• Explicit-State Model Checking – Mapping the states and transitions to an abstract
state space using explicit-valued abstraction [29]

6

Li L1 L2 L3

L6 Le

L4 L5 L3 L6 Le

L4 L5 L3 L4 L5 L3 L6 Le

…

(a) Some paths to the error state in Figure 2.1b

Li

L1

L2 L3

L4 L5

L6

Le Lf

havoc k

i := 2
j := k + 5

[i < 100]

i := i+ 1

j := j + 3

[i >= 100]

[i = j] [i 6= j]

(b) A hard task for (naive)
BMC

Figure 2.2: Bounded Model Checking example and limitations

• Counterexample-Guided Abstraction Refinement (CEGAR) – Mapping the states
and transitions to an abstract state, then refining the abstraction in subsequent
iterations until a feasible counterexample is found, or safety is proven [18]

These techniques are generally used for different applications, e.g. BMC will usually find
bugs the fastest but will not terminate if the state space is too big, while k-Induction is
often capable of proving safety while not finding actually reachable unsafe states. Ab-
straction based techniques can be more complex and therefore slower, but they can both
find bugs and prove safety relatively effectively. In the context of this work, I examined
algorithms based on the BMC-approach, while the proposed new technique shows the
abstraction-based state space exploration used by CEGAR. Therefore, I shall introduce
these two approaches in detail below.

2.2.1 Bounded Model Checking (BMC)

As stated above, Bounded Model Checking (BMC) starts off with one or more initial
states as the root of a tree graph, then repeatedly adds new states to the existing ones
along transitions of the state space in a breadth-first-search (BFS) manner, i.e. all N -
far states are added to the graph before any of the (N + 1)-far states. After reaching
the upper bound of the analysis k, the graph is transformed into a satisfiability-modulo-
theory (SMT) expression using the following recursive rule: the expression at a node is
the conjunction of its state expression and the disjunction of expressions in subsequent
nodes. This means that any junction will create an Or expression, and any paths will
create an And expression. If this expression and the expression of the unsafe state are
satisfiable together, the program is faulty as the unsafe state is reachable within this
k-bound. Otherwise, the analysis continues building the graph with a new bound k′ > k.
Take the example in Figure 2.1. The BMC algorithm will try to enumerate increasing-
depth paths that end in the error location. The first few such paths can be seen in
Figure 2.2a, but looking at the program in Figure 2.1a, these paths will be infeasible, as
the value of i has not yet reached 10, i.e. the exit condition of the loop has not yet been
fulfilled. After 8 iterations, and at a depth of 30, a feasible path will be found – if we
assign −19 to k, the division will fail to due to the divisor being 0. Therefore, the program
can be reported as unsafe.
Now consider the program in Figure 2.2b. The only difference to Figure 2.1b is the exit
condition of the loop – instead of 8 iterations, the program must take 98 iterations before
exiting the loop. For a naive BMC implementation, this means that it has to evaluate

7

Initial precision

Abstractor RefinerARG

Safe Unsafe

Abstract counterexample

Refined precision

Expand Prune

Figure 2.3: The CEGAR loop Figure 2.4: An ARG

97 infeasible paths before the counterexample is found. While possible, it might take a
long time – and in the meantime, no proof of safety is possible as only specific traces are
evaluated, rather than the whole program.
This trait of BMC (i.e. evaluating concrete traces rather than an abstract model) is both
the source of its limitations, and its main advantage – if there is a bug, BMC is capable of
finding it quickly, given it is not buried too deep in the program. This makes it appealing
to use when a guarantee of safety is not required, but there is an incentive for finding
bugs.

2.2.2 Counterexample-Guided Abstraction Refinement (CEGAR)

As opposed to BMC, CEGAR is a tool both for proving safety and finding bugs. While
implementations of CEGAR are generally slower than BMC-based tools due to the algo-
rithmic overhead; CEGAR can handle a superset of the tasks that BMC could solve (see
Section 2.2.2.3). This means that the verification power of CEGAR is at least as big as
that of BMC.

2.2.2.1 A Generic CEGAR Loop

CEGAR is a highly configurable verification algorithm [18], where the main product
of the workflow is the Abstract Reachability Graph (ARG) [12]. The ARG is an over-
approximation of the reachable state space, meaning a reachability in the concrete model
implies reachability in the ARG, but not necessarily vice versa. This property can be seen
in Figure 2.4: even though the filled-in error state is seemingly reachable if only the ab-
stract states (denoted by rectangles) are taken into account, there is no actual path among
the concrete states that could lead to the error state. Therefore, this level of abstraction
is too high, and a more refined version is necessary.
A notable feature of ARGs is state coverability: if a state is found to be covered by
another state, i.e. there is another state whose truth value is implied by the truth value of
the current state (e.g. S1(a = 2, b = 3) implies S2(a = 2), therefore S2 covers S1). In this
case, there is no need to expand the current state any further, as any observed behavior
will also be observed by the covering state. This is a vital tool for combating state space
explosion, as this means that covered states are handled only once. For example, if a
program contains a loop that does not influence the reachability of the error state (e.g.
waiting for an input), the only state we are interested in is the exit point of the loop –
any in-between states are covered-by the loop header state, and therefore not expanded
further.

8

{CFA, Precision}

Abstraction, expanding

{Abstract counterexample(s)}

Refinement, pruning

Safe

Unsafe Spurious

No unsafe state Unsafe state(s)

Feasible Infeasible

Figure 2.5: The CEGAR workflow

To achieve this continuous abstraction-then-refinement workflow, CEGAR works in a loop,
as seen in Figure 2.3. This loop consists of two main algorithms working together: the
abstractor and the refiner. The abstractor takes a precision describing the level of ab-
straction and the input model, and either creates a new ARG or expands the previously
created, and pruned back ARG. This method is useful if a path is only found to be in-
feasible after a few feasible steps, and therefore the beginning of the ARG needs not to
be re-created. When an ARG is ready, the abstractor checks whether an unsafe state is
reachable, in which case the program is reported as safe. Note that safety is provable over
an abstract state space, as it is always an over-approximation of the concrete state space
and therefore the lack of an unsafe, abstract, reachable state implies the lack of an unsafe,
concrete, reachable state as well.
If the created ARG does contain an unsafe state, the abstractor creates one or more abstract
counterexamples, which are paths in the ARG leading to an unsafe state. These abstract
counterexamples are then passed onto the refiner, which has multiple tasks: firstly, trace
feasibility is evaluated (i.e. is at least one abstract counterexample concretizable, in which
case the program is reported as unsafe). Then, if the counterexamples are infeasible, a
new precision is created that is less abstract than the last one. Furthermore, the ARG
is pruned back to the point where it became infeasible, then control is given back to the
abstractor, where this abstraction-refinement cycle starts again.
The state of the algorithm after a single iteration of the CEGAR loop can have three
values: safe, unsafe and spurious, as seen in Figure 2.5. The algorithm also produces
proofs by default: for safety, a completely expanded ARG without an unsafe state suffices;
and a feasible (concretizable) trace serves as the counterexample that shows the path to
the bug in the program.

2.2.2.2 CEGAR Configuration Options

The CEGAR loop, as seen so far, is a declarative specification of the verification algorithm,
i.e. only outcomes are specified and not the actual way to achieve said outcomes. This
is due to the inherent configurability of CEGAR: as long as the parts are compatible
with each other, many aspects of the algorithm can freely be swapped to other techniques
fulfilling the same purpose.
As the possibilities are (almost) endless in terms of configurability, I only present the
options provided by Theta2, an open-source, generic and modular model checking frame-

2https://github.com/ftsrg/theta

9

work developed at the Critical Systems Research Group of Budapest University of Tech-
nology and Economics [40]. In the context of this report, I developed the proof-of-concept
implementations of the presented algorithms in Theta. This choice is in part justified
by the maturity of the framework (the implementation has been validated on thousands
of input models, e.g. in the SV-COMP 2022 software verification competition3), and also
based on my previous contributions to the framework, which are prerequisites for the work
presented in this report. All implementation-specific details are published in [28] – I will
only introduce those relevant to my work.
Theta implements the CEGAR loop with complete modularity in mind. It provides
several built-in options for each swappable component, as well as an easy way to define
custom ones. The two (arguably) most important ones are the abstract domain and the
refinement algorithm.

2.2.2.2.1 Abstract Domain

The abstract domain specifies the basis of the abstraction, and by default, there are two
pure domains implemented in Theta: the explicit value domain and the predicate domain.
The latter is further divided, based on the way multiple predicates are handled inside
a single state – there are cartesian predicate abstraction, boolean predicate abstraction
and split boolean predicate abstraction domains. As previous results showed that software
verification does not usually benefit from boolean predicate abstraction [28], I only focused
on the explicit (EXPL) and cartesian predicate (PRED_CART) abstraction domains.

Definition 2 (Abstract Domain). Formally, an abstract domain is a tuple D =
(S,>,⊥,v, expr) [28], where:

• S: Lattice of abstract states (possibly infinite)
• > ∈ S: Top element
• ⊥ ∈ S: Bottom element
• v ⊆ S × S: Partial order over the lattice S

• expr: A mapping from an abstract state to an actual data state (i.e. an expression)

To define an abstract domain, one has to give a mapping for each member of the tuple D.�

Explicit Domain The explicit abstraction domain defines the current abstraction preci-
sion as a set of tracked variables, i.e. variables whose values are of interest to us. Formally,
the explicit domain can be defined as follows:

• S: A variable assignment of each tracked variable to a value of its domain, extended
with top (arbitrary value) and bottom (no assignment possible) elements.

• > ∈ S: No specific value is assigned to any of the tracked variables.
• ⊥ ∈ S: No assignment is possible to the tracked variables.
• v ⊆ S × S: (s1 ∈ S) v (s2 ∈ S) ⇐⇒ (s1 = s2) ∨ (s1 = ⊥) ∨ (s2 = >)
• expr: The conjunction of the equality expressions for each tracked variable and their

value

10

1 int i = 0, j = 2, k;
2 while(k = ioread32()) {
3 i++;
4 j−−;
5 }
6 assert(j > i);

(a) Positive example for
EXPL

L1, i = 0 ∧ j = 2

L2, i = 0 ∧ j = 2

L3, i = 1 ∧ j = 2 L6, i = 0 ∧ j = 2

L4, i = 1 ∧ j = 1

L6, i = 1 ∧ j = 1

(b) ARG of Figure 2.6a, using line numbers
as CFA locations, tracking i, j and k

1 int i = ioread32();
2 if (i < 5) {
3 if (i > 6) {
4 assert(0);
5 }
6 }
7 return;

(c) Negative exam-
ple for EXPL

L1,>

L2,>

L3,> L7,>

L4,> L7,>

(d) ARG of Figure 2.6c, using line numbers
as CFA locations, tracking i

L1,>

L2,>

L3, i < 5 L7, not(i < 5)

L4,⊥ L7, i < 5

(e) ARG of Figure 2.6c, using line numbers
as CFA locations, tracking i < 5

Figure 2.6: Advantages and disadvantages of the EXPL domain w.r.t. PRED_CART

Note that when applying CEGAR on a CFA, the locations of the CFA are always explicitly
tracked, as to always have a 1 : N relation between locations and states in the ARG.
The explicit abstraction domain also specifies a maxenum value, which is an upper bound
on the enumeration of values to a variable in a single step – which can be useful if the
domain of a variable is infinite or very large. Consider the program in Figure 2.6a: tracking
the value of k is next to impossible, as it is always assigned a 32-bit non-deterministic
number. Enumerating all possible states leads to the state space explosion we are trying
to avoid. Therefore, the algorithm does not try to assign a value to k in any of the abstract
states in the ARG in Figure 2.6b, even though the precision would allow it – instead, k is
kept at its top element. However, even without the value of k, the algorithm is capable
of deciding the safety of the ARG: after just one iteration, the assertion fails. In this
example, this abstract counterexample also corresponds to a concrete trace, and therefore
the refiner will most likely report the program as unsafe.

Predicate Domain The cartesian predicate abstraction domain defines the current ab-
straction precision as a set of tracked (and ponated)4 predicates. Formally, the cartesian
predicate domain can be defined as follows:

• S: A conjunction of predicates
• > ∈ S: True
• ⊥ ∈ S: False
• v ⊆ S × S: (s1 ∈ S) v (s2 ∈ S) ⇐⇒ (s1 =⇒ s2)

• expr: The conjunction of the predicates applicable to the current state
3https://sv-comp.sosy-lab.org/2022/
4A ponated predicate means the outermost expression cannot be a Not operator.

11

https://sv-comp.sosy-lab.org/2022/

Consider the program in Figure 2.6c. If we tried to solve this reachability problem with
the explicit domain, we would get the ARG in Figure 2.6d even at the maximal precision
of tracking all (one) variables. The unsafe state is reachable in the ARG, and therefore the
abstractor cannot classify the input as safe – even though it is evident from the program’s
source that the assertion would never be reached, due to the contradicting i < 5, i > 6
assumptions. However, we cannot assign concrete values to i throughout building the
ARG, as i can take up almost 231 different values that would fulfil either criteria, and we
can only evaluate one if statement at a time if the CFA contains different edges for them.
(As a sidenote, this problem could also be solved by using large-block encoding (LBE)
[14], but currently, Theta only supports a simple version of that).
In comparison, the cartesian predicate abstraction only needs the predicate i < 5 in the
precision to deduce the safety of the program, as seen in the ARG in Figure 2.6e. Note the
unsafe state in red: the ARG building algorithm correctly assigned the bottom element
⊥ to its abstract state, as there was a contradiction in the path – meaning the ARG is
complete and lacks unsafe states, and therefore the program is safe.
An aspect of the abstraction that was previously left out is the transfer function. The
transfer function T maps sets of abstract states to the tuples consisting of an abstract state,
a list of operations and a precision (T : S×Ops×Prec 7→ 2S). In practice, this determines
the successor states of an abstract state in the ARG – which is a clear contradiction to the
previous description of how an ARG is created (i.e. grouping concrete states together).
While that was also a correct way of creating an ARG, it is not practical to create all
concrete states just for being able to create abstract states out of it: instead, the transfer
function is used to explore the abstract state space, and expand previously discovered
abstract states. For example, given the EXPL domain, a precision tracking i, and an edge
in the CFA assuming i > 0 ∧ i < 4 between locations l1 and l2; the state s0(l1,>) would
have the following successor states: {s1(l2, i = 0), s1(l2, i = 1), s1(l2, i = 2)}.
Note that even though the transfer function assigns successor states to abstract states de-
terministically, the way these successor states are handled deeply influences the verification
workflow: it is possible to visit and expand the first successor state in every instance, and
therefore explore that state space in a depth-first manner (DFS), and it is also possible to
visit all successors first before successors to those are visited and expanded (BFS). Any
further combination of these techniques can also exist, such as an error-location-guided
search (ERR), which will favor DFS more if the state is closer to the error location, but
defaults to BFS otherwise [28].

2.2.2.2.2 Refinement Algorithm

As we have seen in Figure 2.6e, the predicate i < 5 in the precision was enough to guide
the abstraction algorithm towards discovering that the program is safe. However, the
discovery of this predicate is not trivial, and it can come from two sources: either from
the initial precision (e.g. all assumes in the model), or the refinement algorithm will have
to discover it while refuting the abstract counterexamples.
There are many different refinement algorithms implemented in Theta, but the relevant
distinction among them in the context of this report is the following:

• Single-counterexample refinement: a single counterexample is generated from the
unsafe ARG, and refuting it provides the new precision for the abstractor

• Multi-counterexample refinement: every counterexample is generated from the un-
safe ARG, and a combined refutation provides the new precision for the abstractor

12

2.2.2.3 BMC Inside CEGAR

As mentioned above, CEGAR is at least as powerful of a verification tool as BMC, due to
BMC being part of CEGAR. In order to justify this claim, consider the following:

• The CFA is extended with a counter c, which is increased after every statement in
the model, starting with 0

• domain: EXPL
• initial precision: {c}
• search algorithm: BFS

This configuration will mimic the BMC algorithm, as it enumerates all paths in the pro-
gram following the value of c. If BMC can find a counterexample, this method will be able
to find it as well – and if BMC runs out of enumerable paths and classifies the program
as safe, this technique will arrive at the same conclusion as well.

2.3 Multi-Processor Architectures

Modern hardware architectures almost universally offer concurrent memory access in a re-
laxed way. This means that read and write operations do not have to execute sequentially,
the memory controller is free to reorder them (respecting certain constraints) to increase
performance. The rules for such relaxed accesses is described by a memory consistency
model (MCM). The specification of MCMs evolved from textual documentation through
small “Litmus-tests” describing forbidden outcomes to well-defined axiomatic formal spec-
ifications of the execution semantics [10, 7, 38].

2.3.1 Memory Consistency Models

Generally, a memory model of an architecture can either be operational or axiomatic
[7]. The former uses elements of the hardware platform such as queues and buffers to
explain certain behaviors on the target architecture, which makes it easier to implement
the architecture directly in hardware, but hinders reasoning on the software side [38]. In
contrast, an axiomatic memory model uses a declarative approach to forbid certain sets
of relations over memory accesses [10]. This approach proved to be better for reasoning
about possible executions of concurrent programs, and therefore most software verification
tools employ an axiomatic model to provide information on the guarantees of the hardware
architecture [5, 3, 2, 25, 21] or the programming language [32, 35].
One axiomatic memory modeling language is CAT [8], which has been created to specify
memory models for Herd [7] but has since seen widespread adoption due to its succinctness
and expressivity.
The CAT language uses the notion of candidate executions to model possible executions
of a program. A candidate execution is a directed, labelled graph, where each node
corresponds to an event and is labelled by the specific event sets it belongs to; and each
edge corresponds to a binary relation defined over the events. Event sets and relations
come from both a predefined list of built-in elements, as well as the memory model.

13

2.3.1.1 Event Sets, Relations and Constraints

The predefined event sets consist of the following [8]:

• W: write events
• R: read events
• M: memory events (M = W ∪R)
• IW: initial writes stemming from the initial memory state
• FW: final writes observed at the end of test execution
• B: branching events
• RMW: read-modify-write events
• F: fence events
• XYZ : specific fence events from the architecture (such as MFENCE, FENCE and SFENCE

for x86)

Derived event sets can be created by applying set operations over existing ones, such as
union, intersection and difference. Furthermore, the (possibly filtered) Descartes-product
of event sets can lead to relations. Some relations are predefined as follows [8]:

• po: program order
• addr: address dependency (the target event’s memory location depends on the source

read’s value)
• data: data dependency (the target write’s value depends on the source read’s value)
• ctrl: control dependency (the target event is found in a branch controlled by an

assumption depending on the source read’s value)
• rmw: read-exclusive write-exclusive pair: the target exclusive write is a successful

operation matched with the source exclusive read; or atomic RMW instructions
• amo: relate the read and write events of atomic RMW instructions
• id: identity (relate each event to itself)
• loc: same-location (relate all event-pairs that touch the same memory location)
• ext: external (relate all event-pairs that reside in different threads)
• int: internal (relate all event-pairs that reside in the same thread)
• rf: read-from (the target read’s value is taken from the source write)
• co: coherence order (a total order of same-location write events) 5

Derived relations can be created by applying one or more of the following operators over
existing ones:

• Complement
• Domain
• Identity closure
5While CAT in itself defines co as a derived relation, it is a vital element of every execution and therefore

I elevate it into this list

14

W(x,0)

R(x)

W(x,1)

R(x)

W(x,2)

po po

po po

(a) Control flow

W(x,0)

R(x)

W(x,1)

R(x)

W(x,2)

rf

rf

(b) Data flow

W(x,0)

R(x)

W(x,1)

R(x)

W(x,2)

(c) Memory model violation
W(x,0)

W(x, 1) W(x, 2) R(x)
co

co

(d) Last value is 2, Read receives 0

W(x,0)

W(x, 1) W(x, 2) R(x)
co

co

(e) Last value is 1, Read receives 0

Figure 2.7: Candidate executions

• Inverse
• Reflexive transitive closure
• Transitive closure
• Range
• To ID
• Sequence
• Union
• Difference
• Intersection

Finally, relations can be constrained to be (ir)reflexive, (non-)empty or (a)cyclic. Candi-
date executions can be checked against the memory model specification to decide if they
are consistent or in violation with the candidate. For example, against the specification
that no Read on a given thread shall receive a value from a later Write on the same thread
(any path (po | rf)+ is acyclic), the example candidate execution in Figure 2.7c is in
violation of the memory model. However, if a candidate execution is indeed consistent, it
becomes an execution graph, describing an observable outcome on the given architecture.
Note the lack of other primitives on the execution graph. By populating the po and
rf relations the necessary control and data flow is fully defined, and no further relation
is necessary – most notably, the coherence order co [7, 21] (or modification order [32]),
i.e. the total ordering of same-location Write events, is entirely superfluous. Consider the
two candidate executions in Figures 2.7d and 2.7e, where this relation is not omitted. In
both cases, the Read will read 0 from memory, but the order of the Write events differs.
The outcome and overall execution of the program is not influenced by these differences
other than the final observable value in memory. However, as the two executions are not
the same graph, both variants will be produced when enumerating the possible candidate
executions. Unless the state of the global memory is ever needed to be queried, it is enough
to determine for each Read event the set of Write events it might receive data from. This
does not mean that any derived relation that uses co as one of its operands will have to
be completely re-written, but rather that we can simply leave co as unspecified with a few
constraints: as long as there is a co-order that relates every same-location pair of writes in
either in exactly one way (i.e. if elements a and b are same-location writes, either co(a, b)
or co(b, a) is true, but not both), the execution is feasible.

15

1 int x;
2 void∗ thr(void∗ _) {
3 x = 1;
4 x = 2;
5 }
6 int main() {
7 pthread_t t;
8 pthread_create(&t, 0, thr, 0);
9 int i = x;

10 int j = x;
11 _Bool k = (j >= i);
12 pthread_join(handle, 0);
13 assert(k);
14 }

(a) Concurrent program test-
ing sequentiality

{6}
x = 0

{9, 3}
x = 0

{10, 3}
x = 0, i = 0

{9, 4}
x = 1

{11, 3}
x = 0, i = 0, j = 0

{10, 4}
x = 1, i = 0

{10, 4}
x = 1, i = 1

{9, 5}
x = 2

{12, 3}
x = 0, i = 0
j = 0, k = 1

{11, 4}
x = 1, i = 0

j = 0

{11, 4}
x = 1, i = 0

j = 1

{10, 5}
x = 2, i = 0

{11, 4}
x = 1, i = 1

j = 1

{10, 5}
x = 2, i = 1

{10}
x = 2, i = 2

{12, 4}
x = 1, i = 0
j = 0, k = 1

{12, 5}
x = 2, i = 0
j = 0, k = 1

{11}
x = 2, i = 2

j = 2

{12}
x = 2, i = 2
j = 2, k = 1

{11}
x = 2, i = 0

j = 2

{12}
x = 2, i = 0
j = 2, k = 1

{11}
x = 2, i = 1

j = 2

{12}
x = 2, i = 1
j = 2, k = 1

{12, 4}
x = 2, i = 0
j = 1, k = 1

{11, 5}
x = 1, i = 0
j = 1, k = 1

{12, 5}
x = 2, i = 0
j = 1, k = 1

{12}
x = 2, i = 0
j = 1, k = 1

2 2

(b) State space of Figure 2.8a, using tuples of line numbers as
locations (States with bold numbers are not fully expanded)

Figure 2.8: State space exploration based on naive interleaving semantics

2.4 Analysis of Multi-Threaded Programs

Concurrent software verification algorithms also fall into two categories, depending on the
execution semantics they employ. The interleaving semantics uses overlapping traces of
the threads in the concurrent program to explain how it executes. This approach, when
used naively, does not scale well due to the large number of possible unique executions.
This is partially solved by utilizing e.g. partial order reduction (POR) [26], which signifi-
cantly reduces the number of necessarily explored executions. In contrast, the declarative
semantics of concurrent program executions uses partial orders to explain a specific execu-
tion. The candidate executions introduced above are examples to such a semantics, as the
po and rf relations partially order the statements and yield a well-defined single execution
of the program [7]. This declarative semantics has been shown to perform better on weak
memory than the interleaving semantics over sequential memory, when implemented in
model checking algorithms [6].

2.4.1 Interleaving Semantics

The naive way of dealing with concurrency is to strictly follow the definition of asyn-
chronous systems, i.e. any of the threads may execute at any point in time, meaning every
possible total order of the instruction has to be explored. This technique employs naive
interleaving semantics.
Consider the example in Figure 2.8a (note that based on the C standard, a global variable
will be initialized to 0, if no explicit value is assigned [31]). The main thread starts a
worker thread, which writes two values to x, while the value of x is read twice. As the
value of x increases monotonically, we assert that the latter read’s value shall be at least
big as the former’s. We store this in a boolean k. If we tried to enumerate all executions
based on the naive interleaving semantics, we would get the state space in Figure 2.8b –
there are 10 different executions that can take place, as the 3 + 2 operations between the
start and end of the worker thread give rise to 10 total orders. However, if we examine
the outcomes of the different executions, the set of possible end values is way smaller: x
is always 2, j is always bigger than i and k is therefore always 1. Even though i and j can

16

{6}
x = 0

{9, 3}
x = 0

{10, 3}
x = 0, i = 0

{9, 4}
x = 1

{11, 3}
x = 0, i = 0, j = 0

{10, 4}
x = 1, i = 0

{10, 4}
x = 1, i = 1

{9, 5}
x = 2

{12, 3}
x = 0, i = 0
j = 0, k = 1

{11, 4}
x = 1, i = 0

j = 1

{10, 5}
x = 2, i = 0

{11, 4}
x = 1, i = 1

j = 1

{10, 5}
x = 2, i = 1

{10}
x = 2, i = 2

{12, 4}
x = 1, i = 0
j = 0, k = 1

{12, 5}
x = 2, i = 0
j = 0, k = 1

{11}
x = 2, i = 2

j = 2

{12}
x = 2, i = 2
j = 2, k = 1

{11}
x = 2, i = 0

j = 2

{12}
x = 2, i = 0
j = 2, k = 1

{11}
x = 2, i = 1

j = 2

{12}
x = 2, i = 1
j = 2, k = 1

{12, 4}
x = 2, i = 0
j = 1, k = 1

{12, 5}
x = 2, i = 0
j = 1, k = 1

{12, 4}
x = 1, i = 1
j = 1, k = 1

{12, 5}
x = 2, i = 1
j = 1, k = 1

Figure 2.9: POR-based state space of Figure 2.8a, using tuples of line numbers as loca-
tions (main thread executes first)

take up any one of the values from the set {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}, this is
still only 6 possible outcomes instead of the 10.
To explain this behavior, let us examine the three branches of the state space tree marked
with patterns. In these executions, the values to i and j were decided early on, as the main
thread progressed more than the worker thread. In theory, this would eliminate the need
for further analysis, as any further action on either thread is independent of the other –
x will be increased further, but no operation will use its value; and k is never used in any
of the global memory accesses. However, the naive interleaving approach had to explore
these subexecutions as well because it had no way of determining which operations would
influence the final outcome and which ones would not.
An intuitive step to take is to discover independent pairs of transitions in the model, and
forbid the exploration of both total orders. This technique is called partial order reduction
(POR) [26], and it is widely used in the verification of concurrent systems (Even though
there is a specialized version of POR called dynamic partial order reduction (DPOR) [24],
which is shown to be more optimal, introducing and implementing that algorithm falls
outside the scope of this work).
Consider the same input program in Figure 2.8a. If we apply POR based on a global-local
partitioning of the transitions, where every transition touching a global memory object is
considered dependent on each other, we get the state space in Figure 2.9. In this case, state
space exploration was optimal, as each explored total order yielded a different outcome,
and no possible outcome was left out.
Even though the presented example showed the POR algorithm to be optimal, this is not
the case in every input program. For example, there could be another, totally independent
y global variable, and two threads performing the same operations over y as over x – in
this case, all total orders would have to be explored among accesses to the global variables
as well, which would yield a suboptimal exploration. There are techniques mitigating this
behavior (e.g. in [1], the authors have shown that there is an optimal DPOR, and also
gave an example for such an algorithm), but the presented naive POR cannot deal with
this problem.

17

W(x,0)

i := R(x)

j := R(x)

W(x,1)

W(x,2)

(a) Abstract execution graph of Figure 2.8a

W(x,0)

i := R(x)

j := R(x)

W(x,1)

W(x,2)

(b) A concrete execution from 2.10a

Figure 2.10: Program verification based on declarative semantics

2.4.2 Declarative Semantics

To showcase the differences between the interleaving and declarative semantics, let us look
at the same problem in Figure 2.8a. To generate the declarative state space of the program,
an abstract execution graph is necessary – which is similar to a candidate execution, but
Reads are not limited to a single rf -edge, and only po- and rf -edges are present. The
semantics of such a construct is the following: all executions are observable which stem
from a consistent candidate execution that is a subgraph of the abstract execution graph,
and for which a satisfying total co order exists over same-location writes. Such an abstract
execution graph can be seen in Figure 2.10a, and an example concrete execution is shown
in Figure 2.10b.
Note that in this case, state space exploration is optimal by default: after the abstract
execution graph is built (which is interleaving-free, and therefore can be built in a single-
pass over the operations in the program), only different, and consistent execution graphs
are enumerated.

2.4.3 Multi-Threaded CFA

In order to verify multi-threaded programs, a formalism supporting multi-threading is
also necessary. As with single-threaded programs, a formalism encoding control-flow in
the form of a program counter-like construct is advantageous – therefore, the basis of the
chosen formalism is still a control flow automaton (CFA) [13]. However, this formalism has
been extended in the following ways, giving rise to the eXtended Control Flow Automata
(XCFA):

18

Definition 3. eXtended Control Flow Automata (XCFA)
An XCFA is a tuple XCFA = (Vg, P), where:

• Vg: Global variables
• P : Processes, which are tuples P = (Vp, F, f0), where:

– Vp: Thread-local variables
– F : Procedures, which are tuples F = (Vl, CFA,Pin, Pout), where:

∗ Vl: Local variables
∗ CFA: A conventional CFA (which can use Vg ∪ Vp ∪ Vl as variables),

extended with the following operations:
· Function calls
· Start thread and join thread
· Atomic begin and atomic end
· Store, Load and Fence

∗ Pin ⊆ Vl: Input parameter variables, which are assigned when the function
is called

∗ Pout ⊆ Vl: Output parameter variables, which are returned when the func-
tion returns

– f0 ∈ F : The main function of the process (execution starts here)

Semantically, an XCFA can either be static or dynamic. In the former case, only the
starting set of processes can execute. In the latter case, the start thread and join thread
operations manipulate the set of enabled processes. In both cases, the processes fire asyn-
chronously. �
Note that variables can either be assigned via normal assignments (as in a conventional
CFA), or through store and load operations. In the context of this work, I assume total
sequentality for assignments, and only apply the memory model for the analysis of the
designated memory access instructions.

19

Chapter 3

State of the Art

My contributions presented in this thesis mainly concentrate on the efficient handling
of parallelism, handling both the sequential and weakly ordered case. In this chapter,
I introduce the state-of-the-art tools for handling concurrency in these cases. For the
sequential case, I concentrate on the algorithms employing a form of CEGAR, as that falls
the closest to the scope of my work; while for the weakly ordered case I introduce the most
advanced bounded algorithms, due to the lack of a general solution covering infinite-state
programs1.

3.1 Sequentially Ordered Concurrency

Most model checkers capable of verifying concurrent programs that employ a form of
abstraction-refinement techniques use a pre-processing step to determine atomically exe-
cutable (i.e. thread-local) transitions and global operations. Then, every interleaving is
explored among these transitions when calculating abstract successor states. Note that
these solutions employ a crude version of POR, with no dynamic element.
VVT [27] uses an LLVM-based front-end to verify C programs, which determines blocks
of instructions that can execute atomically without interfering with the allowed set of
outcomes. Then, these blocks serve as the individual transitions in a large-block encoded
CEGAR loop.
In comparison, CPAchecker [11] uses a pre-processing step on the edges of the CFAs to
determine thread-local and global operations, then uses a similar large-block encoded CE-
GAR loop. In addition, it uses several further optimization steps to be more performant;
such as waitlist ordering and partitioning of abstract states.

3.2 Weakly Ordered Concurrency

The algorithm presented in this report has been heavily influenced by three existing tools,
namely, Herd [7], Dartagnan [21] and rcmc [32]. In this section, I will present the
approaches employed by these tools.

1At the time of writing this report, I have no knowledge of any approach that utilizes any form of
abstract reasoning over declarative semantics.

20

ExampleArch same−loc
{ x=0; }
P0 | P1
MOV [x],$1 | MOV R0,[x]
MOV [x],$2 | MOV R1,[x]
exists (1:R0=2 /\ 1:R1=1)

(a) Litmus test same-loc

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

(b) Candidate executions with fixed co- and po-orders

Figure 3.1: Herd’s input litmus test and the generated candidate executions

3.2.1 Herd

Herd is a memory model simulator [7]. It expects a memory model specification written in
the CAT language [8] and a litmus test. Litmus tests are small, assembly-level concurrent
programs that include accesses to global memory, as well as constraints on local variables.
Litmus tests are widely used to specify guarantees of memory models, e.g. Intel most
notably only uses such programs as the specification of the X86 memory model [17]. For
example, a memory model rule might forbid the reordering of same-location accesses. The
corresponding litmus test in Figure 3.1a has two threads: a producer with two consecutive
Write events, and a consumer with two consecutive Read events, all to the same location.
Any execution is forbidden where the consumer observes the two written values in reverse
order, i.e. the value of R1 is 1 from the earlier Write, while the value of R0 is 2 from the
second Write. This outcome is only possible when either the Reads or the Writes have
been reordered.
For a given memory model and litmus test, the question is whether the forbidden behavior
is observable on the target architecture. To answer this question, Herd will first generate
all candidate executions of the litmus test. This is done in an enumerative way: for each
primitive relation every semantically correct combination will be explored [7], as seen in
Figure 3.1b. After enumeration, the candidate executions are filtered based on whether
they are consistent with the specified memory model. If any consistent execution graph of
the litmus test produces the forbidden outcome, the specified behavior is observable and
the litmus test fails. For the example in Figure 3.1a, there is one such candidate execution
(given fixed co- and po-orders), highlighted in bold in Figure 3.1b.
The example in Figure 3.1 also shows that the number of candidate executions is generally
much higher than the number of consistent execution graphs. Given a memory model
rule that forbids the reordering of same-location accesses, only 6 candidate executions
are consistent out of the 9 in Figure 3.1b given the fixed co-order. However, the total
number of candidate executions are much higher. The Write events can be ordered by any
of their permutations, as the algorithm cannot assume that any of those partial orders is
inconsistent without taking the memory model into account. However, given the forbidden

21

int x = 0;
void thr1(void∗ _) {

x = 1;
x = 2;

}
void thr2(void∗ _) {

int r0 = x;
}

(a) Example input

int x = 0;
int y = 0;
void thr1(void∗ _) {

y = 1;
x = 1;

}
void thr2(void∗ _) {

int r0 = x;
int r1 = y;
assert (!(r0 == 1 &&

r1 == 0));
}

(b) Input causing false posi-
tives over SC

W(x,0)

W(x,0)

W(x,1)

W(x,0)

W(x,1) R(x)

W(x,0)

W(x,1) R(x)

W(x,0)

W(x,1) R(x)

W(x,2)

W(x,0)

W(x,1) R(x)

W(x,2)

W(x,0)

W(x,1) R(x)

W(x,2)

Figure 3.3: Exploring the program in Figure 3.2a

W(x,0),W(y,0)

W(y,1) R(x)

W(x,1) R(y)

(a) r0 = 0
r1 = 0

W(x,0),W(y,0)

W(y,1) R(x)

W(x,1) R(y)

(b) r0 = 0
r1 = 1

W(x,0),W(y,0)

W(y,1) R(x)

W(x,1) R(y)

(c) r0 = 1
r1 = 0

W(x,0),W(y,0)

W(y,1) R(x)

W(x,1) R(y)

(d) r0 = 1
r1 = 1

Figure 3.4: Execution graphs generated by rcmc

same-location reordering, only the one in Figure 3.1b is consistent with the memory model.
This puts the number of all candidate executions at 3! ∗ 9 = 54, and the percentage of
consistent execution graphs at 11.1%. For larger programs, this ratio is even smaller, as the
number of unnecessary partial orders becomes higher. This observation is also established
by the practical evaluation of the rcmc tool, which only generates consistent execution
graphs [32].
The goal of Herd is not general program verification, but rather architectural verifica-
tion. Litmus tests are by definition small programs, and therefore it is unnecessary to
optimize the algorithm in Herd for input size. For anything larger than an ordinary
litmus test, Herd will most likely time out while enumerating the candidate executions.
This prompted the development of smarter candidate execution generation, such as rcmc
[32].

3.2.2 Rcmc

The novelty of rcmc is its smart exploration algorithm. In each step of its algorithm, rcmc
will only generate consistent execution graphs, and no execution graph is ever explored
twice. The implemented stateless model checking algorithm receives a concurrent C/C++
program with optional assertions, and enumerates all consistent executions as its output.
If in any of the execution graphs the assertion is violated, or a non-atomic concurrent

22

access occurs, the tool reports the program as unsafe immediately. Note that the memory
model is not an input, as the C/C++ concurrency model (as formalized in the repaired
RC11 memory model [34]) is hard-coded into the algorithm. This significantly reduces
the applicability of the tool for custom architectures and potentially yields false positive
results.
Consider the input program in Figure 3.2a. Two threads are executing concurrently, one
writing to memory and another reading from it. Note that atomic accesses have been
replaced with regular assignments for the sake of brevity. For the sake of this example,
relaxed accesses can be assumed.
The execution of the algorithm can be seen in Figure 3.3. rcmc will start by recording the
initial values in a node, then one-by-one adding the statements of the program. Any time
a Read event is added, each subexecution is explored where Read receives a value from
any existing Write event. In exactly one of the subexecutions, Read remains revisitable,
i.e. a later Write can provide it a value. Revisitable nodes are underlined in the example.
Each time a Write event is added, each subexecution is explored where the newly added
Write provides a value for any combination of currently revisitable Reads. Furthermore,
each consistent co-order is also explored, but in Figure 3.3, this is deterministic due to
po. In the example in Figure 3.3, the order of recorded nodes alternates between the two
threads, starting with a Write event to x.
The novelty behind the algorithm is to use revisitable nodes to mark a single subexecution
where a given Read event’s value is not final. If more than one such subexecution existed,
adding a subsequent Write event could generate redundant subexplorations [32].
Consider the input program in Figure 3.2b and the generated execution graphs in Fig-
ure 3.4. Depending on the received values in the second thread, an assertion failure can
occur. The condition of the assertion means that the second Write event executed before
the previous one. This is observable in Figure 3.4c. Considering C/C++ can generally
run on any architecture, one cannot assume that the hardware is not e.g. sequentially
consistent (SC). SC guarantees that no statements will be reordered, and therefore the
assertion is never violated. rcmc, however, reports it as unsafe because C/C++ does not
guarantee this assumption, and therefore this can be categorized as a false positive result.
This is not a shortcoming of the algorithm itself, but rather of the approach: one cannot
assume that the memory model of a programming language is independent of the target
architecture [41]. Such a false result might shadow actual problems in the input program,
and is therefore inherently unsafe.
Another problem of rcmc is the suboptimal exploration of executions when multiple
threads write the same variable. As noted above, exploring artificially generated co-orders
is detrimental to the number of execution graphs. In the worst case, each new Write event
will effectively multiply the number of subexecutions by the factor of existing Write events
to the same variable, even if only one thread observes the value. In this case, enumerating
all execution graphs where this Read reads from a different Write would suffice, yet this is
multiplied by the factorial of the number of Write events, as seen in Figures 2.7d and 2.7e.

3.2.2.1 GenMC

As an imprevement to Rcmc, GenMC [33] promises to deliver a memory model-aware,
stateless model checking algorithm. This enables the verification of software running on
custom memory models with an approach very close to that of Rcmc. However, the
boundedness of the algorithm is still a considerable drawback (as it is with Rcmc as well).

23

Software
verification

Parametric
memory model Scalable

Optimal
execution

enumeration

Handle
unbounded
state spaces

Herd 7 3 7 7 7

rcmc 3 7 3 3* 7

Dartagnan 3 3 3 N/A 7

Figure 3.5: Comparison of related verification tools

3.2.3 Dartagnan

Most of the concerns above are addressed by Dartagnan, a bounded model checker that
uses memory models as modules [21, 25]. Dartagnan expects a concurrent program
and a memory model as inputs, and using the conjunction of SMT-encoded expressions
determines whether an unsafe state is reachable within a given bound. To achieve this,
Dartagnan unrolls and encodes the concurrent program as an SMT-expression; encodes
the unsafe state as another SMT-expression; and encodes the input memory model as an
SMT-expression. If the conjunction of the expressions above is satisfiable, the unsafe state
is reachable and therefore the concurrent program is unsafe.
Dartagnan is a software verification tool, complete with an integration to Smack [37],
an LLVM-based program transformation tool that allows Dartagnan to work on formal
models rather than source-level programs. The gap between the higher-level LLVM-IR and
the ISA of the target architecture is bridged by using compiler mappings for translating
e.g. memory ordering primitives [21]. This is a conventional procedure [41], but special
attention has to be paid to ensure the compiler mappings represent an actual compiler’s
behavior that might be used to compile the examined program later on.
In comparison with Herd and rcmc, Dartagnan (and its companion tool, Porthos
[21]) is not capable of enumerating consistent executions. Even though as a reachability
checker, Dartagnan is not expected to provide this feature, it could be useful to provide
a way to use the tools embedded into other verification algorithms for handling concurrent
parts of an otherwise independent set of threads. In this case, an unsafe state might not
only be dependent on the concurrent parts of the program, and therefore Dartagnan
could not handle it on its own.
Evaluating the five criteria in Figure 3.5 reveals that none of the tools fulfil every aspect.
Herd is not capable of software verification due to scaling issues caused by its suboptimal
execution enumeration approach. rcmc is not parametric and therefore only C/C++
guarantees are assumed, and it uses artificially generated co-orders which increase the
number of explored execution graphs. Dartagnan cannot enumerate consistent execution
graphs. Furthermore, neither solution can handle unbounded programs.

24

Chapter 4

SMT-Based Verification over
Declarative Semantics

In most memory model-aware verification tools (such as Herd [7] and Rcmc [32]), the
consistent candidate executions are create generatively, i.e., by starting from an empty
execution and adding events and locations until a complete candidate execution is cre-
ated. If reachability of some error state is required, their approach is to enumerate all
consistent executions, and see whether any include the given state. In contrast, SMT-
based verification tools such as Dartagnan use an SMT-solver instead, and encode the
unsafe state explicitly in the query. While this introduces the complexity of dealing with
an SMT-solver, the acquired benefit of answering reachability queries directly make it
worthwile.
In this chapter, I introduce my implementation of an SMT-based algorithm for verifying
reachability over declarative semantics, influenced greatly by Dartagnan. Throughout
this chapter, all my work can be assumed to have taken place in Theta [40], a configurable
and modular verification framework I am a developer of1. However, the implementation is
subject to change in the future, and therefore I do not consider it an artifact of this thesis.

4.1 Representing the Input Program

Theta includes support for a diverse set of input formalisms, such as Extended Timed
Automata (XTA), Symbolic Transition Systems (STS) and Control Flow Automata (CFA)
[28]. While all of these have roughly the same expressive power, they lack certain features
that make it hard to represent parallelism. Most notably, none of these provide any infor-
mation on the structural composition of the source model. Therefore, I opted to implement
and use a version of the previously introduced eXtended Control Flow Automata (XCFA)
formalism. In this section, I introduce this implementation an elaborate on its features.
Theta achieves its modularity by clearly abstracting formalism-specific parts of the ver-
ification algorithms away from the core analysis modules [22, 28]. Furthermore, for each
formalism, the code is divided into three main packages:

• the core formalism, containing the classes used for the in-memory representation of
the model;

1https://github.com/ftsrg/theta

25

https://github.com/ftsrg/theta

XCFA XCFA CLI XCFA Analysis

Model Passes XcfaCli.java Wrappers Utils

Passes

XcfaPasses Process-
Passes

Wrappers

Procedure-
Passes

XcfaPassManager.java

«interface»
XcfaState

«interface»
XcfaState

«interface»
XcfaState

«interface»
XcfaState

«interface»
XcfaState

DeclXcfaState

...

C-frontend

Analysis

Core

...

Figure 4.1: High-Level Architecture of Theta, focusing on the XCFA subproject

• the analysis package, containing the wrappers that provide access to the formalism
for the higher-level analyses; and

• the CLI package, which provides an executable frontend to running Theta’s algo-
rithms on the formalism.

To follow this pattern, the XCFA subproject is also divided into the three corresponding
packages: xcfa, xcfa-analysis and xcfa-cli, as seen in Figure 4.1. The main entry
point is the XcfaCli class from the xcfa-cli package, which provides the configuration
options that govern the verification process. This will instantiate the necessary wrappers
from the xcfa-analysis package, and parse the input file to create an in-memory XCFA
from the xcfa package using the Theta’s C-Frontend implementation (more on this in
Section 4.1.1). Currently, the XCFA formalism does not define a DSL, as input is expected
to only come as C programs when using this tool. (To use another source, such as litmus
tests, one can use the XCFA infrastructure as a library – see Section 4.1.2).
An XCFA consists of processes, which in turn consist of procedures. Reflecting this,
the XCFA in-memory representation found under the xcfa/model package is also multi-
layered, consisting of the elements seen in Figure 4.2. Note that some relations are left
out from this diagram, as to keep the figure easy to interpret.
One of the features of an XFCA is that it can be static or dynamic, i.e., it can start all
processes at startup or spawn new ones during execution. In the context of this work,
both configuration options can be observed, as most programs follow the dynamic option,
while the models of distributed systems rarely need to spin up new devices while working,
and therefore it can be assumed that all processes are known before launch.
The xcfa-analysis package is unique among the other analysis packages of Theta,
as it includes more than one set of wrappers. This was necessary to provide different
mappings for single- and multi-threaded algorithms, as well as interleaving- and declarative
semantics-based implementations for the latter.

26

[1..*]
processes

XCFA

- globalVars: VarDecl[0..*]

[1..*]
procedures

XcfaProcess

- thrdLocalVars: VarDecl[0..*]

[1..*]
edges[2..*]

locations

XcfaProcedure

- localVars: VarDecl[0..*]
- params: Tuple<VarDecl, Dir>[0..*]

source
targetXcfaLocation

[0..*]
labels

incomingEdges
outgoingEdges

XcfaEdge XcfaLabel

AtomicEnd

AtomicBegin

ProcedureCall

StartThread

JoinThread Store

Fence

Sequence

Nondet

Stmt

Load

Figure 4.2: Class diagram of a subset of relations inside the XCFA representation

4.1.1 Parsing C Programs

Currently, the only fully supported frontend to the XCFA subproject is the C frontend.
This is an ANTLR2-based parser that supports C programs in the format of SV-COMP3, a
verification competition for C verifiers. This C frontend creates an intermediary represen-
tation (not an XCFA, as to be formalism-independent), which can be further transformed
into any formalism, such as the XCFA. To be as efficient as possible, this process follows
the workflow outlined in our paper on efficient frontends for C verification [9], i.e., it
consists of two steps: first the raw C program is transformed into a verbose XCFA, after
which several optimization- and elimination passes can transform it into its final form
(governed by XcfaPassManager). This approach has been validated by both our results
on this year’s SV-COMP [4] and the tests in our FormaliSE paper [9].

4.1.2 Parsing Litmus Tests

A new and experimental feature of Theta is to use programs in the litmus format of
Herd [7] as input, through the XCFA formalism. The implementation can be found in
the litmus2xcfa package, and currently it only supports the AArch64-flavor of the litmus
format, as this architecture provides the most interesting memory model out of the com-
mon ones (x86, arm32 and power are too simple, the linux kernel memory model is out of
the scope of this implementation and RC11 does not have enough associated litmus tests
used by other verification tools). The current implementation is based on the ANTLR-

2https://www.antlr.org/
3https://sv-comp.sosy-lab.org/

27

https://www.antlr.org/
https://sv-comp.sosy-lab.org/

litmus-cli

cat

XCFA

xcfa

xcfa-analysis

xcfa-cli

Frontends

c-frontend litmus2xcfa

Core

mcm

Figure 4.3: Summary of new features in Theta

[1..*]
constraints

MCM

relation

MCMConstraint

rule

MCMRelation

op

MCMRule

UnaryMCMRule

rightOp

leftOp

BinaryMCMRule

Toid
Toid

Toid
Toid

Toid
Difference

Figure 4.4: MCM representation

grammars provided by Dartagnan’s public repository4, and a set of custom visitors are
used to transform it into an XCFA.
To go along with this frontend, a new CLI tool has also been added to Theta, called
litmus-cli, to be used as the entry point to litmus test verification.

4.2 Representing the Memory Model

The second input to the verification workflow is the memory model. It is assumed to be
provided in the Cat format, and I used the ANTLR grammar used by Dartagnan as the
basis to this process. First, I extended this grammar by further concepts used by Cat (such
as functions, procedures and file inclusion) and I created the in-memory representation for
the memory model’s elements. To not constrain myself to just using Cat in the future, I
provide an abstraction over its syntax to only include mathematical elements such as sets
and relations – this is to follow the patterns seen in other parts of Theta. Therefore, I
created a new analysis package called mcm inside Theta’s core subproject, and I placed
the necessary classes there (see Figure 4.4). This is also the place where I created the
analysis package to be introduced in Section 4.3.
For a summary of the new features in Theta, see Figure 4.3: the XCFA project contains
the three subprojects used for program verification via the XCFA formalism, which use
the c-frontend package to parse C programs into XCFA models; the core subproject
has been extended with a new package called mcm which is responsible for storing memory
models and verifying concurrent- and distributed systems over declarative semantics; and
the two standalone packages litmus-cli and cat can be used to parse (with the help of
litmus2xcfa) and run (via the mcm package) analyses over litmus tests.

4https://github.com/hernanponcedeleon/Dat3M/

28

https://github.com/hernanponcedeleon/Dat3M/

SMT-Based
Declarative Verifier

- pids: int[1..*]

- initialWrites: Write[0..*]

Solver

MCM

«interface»
MemoryEventProvider

+ getPiecewiseAction(a: Action, s: State): Action[1..*]

+ getVarId(var: VarDecl): int[1..*]

MultiprocLTS

+getActionsFor(pid: int, s: State)

«interface»
LTS

+getActionsFor(s: State)

XCFA
State

Action

XcfaProcessState

XcfaProcessAction

XcfaMemoryEventProvider

XcfaProcessLTS

Figure 4.5: Class diagram of the necessary elements used in the algorithm

4.3 Implementing the Core Algorithm

Having parsed and stored a memory model and a program, the goals regarding their
verification are the following:

1. If an error property is given, find a consistent execution of the program that satisfies
the error property. If found, flag that as a counterexample, and if not, provide a
proof of safety.

2. If no error property is given, enumerate all consistent execution graphs.

Note that in this chapter, the input program has to be constrained not to include loops.
This requirement is set to avoid infinite loops over paths in the program, as the algorithm
does not keep track of the current state and therefore all transitions are always enabled.
This is solved by the algorithm proposed in Chapter 6.

4.3.1 Overview of the Approach

The goal is to create a single SMT-formula Φ, which is only satisfiable by consistent
executions (if an unsafe property is also given, then it should satisfy that as well). This
will come from the following sources:

1. Control and data flow ϕCDF;

2. Memory model ϕMCM; and

3. The unsafe property ϕERR.

Then, using Φ := ΦCDF∧ΦMCM∧ΦERR, an SMT-solver can either find a satisfying model
for Φ and therefore produce a counterexample, or report the program as safe.
To get the above mentioned encodings, an overview of the necessary elements can be seen
in Figure 4.5.

4.3.2 Encoding Control and Data Flow

To encode the control and data flow of the input program, the workflow consists of three
main steps:

29

1. Explore the program’s memory events and branches

2. Encode the branch conditions as SMT-formulae

3. Constrain the events to forbid taking multiple branches in a single thread, and
enforce causality in the program order

Exploring the program’s memory events take use of the two interfaces connected to the
main verification class, namely MultiprocLTS and MemoryEventProvider. Their respec-
tive tasks are:

• Provide a list of outgoing transitions from a state (which is analogous with a location
in this context) on a given process,

• Provide a slicing of an action (i.e., a transition) into a sequence of sub-actions that
are either normal actions or memory events, and map each variable to an index.

Using these elements, the basic control flow can be established in the input program
– as each memory event is discovered via querying the MemoryEventProvider for the
transitions supplied by the MultiprocLTS. This results in a tree of events which will
provide the po-relation.
Next, the control flow tree has to be encoded into the ΦCDF SMT-formula. To do this, for
each event i a new constant ti is introduced, which must be true to include the correspond-
ing event in the final execution (the in-trace unary relation). To achieve well-formedness,
the following constraints must be placed over the values of t:

1. For each initial write, ti should be true.

2. For each ti, all previous events must be true for ti to possibly be true.

3. For each ti, exactly one successor must be true

(a) At most one because a choice must be made about the successor branch; and
(b) At least one because we would like to maximize the executions

Furthermore, we must deal with the labels on the edges of the program. As we use an
SMT-encoding, first we have to create a static single assignment (SSA) form, which will
have indexed constants instead of the variables on the edges; then constrain the resulting
formulae to be true when their transition’s target state is chosen to be in-trace.
The resulting workflow is demonstrated in the example in Figure 4.6. First, the memory
events and branches of the program in Figure 4.6a are explored and thus Figure 4.6b is
created (given an arbitrary initial write, here −1), which has 6 numbered events with a
single error state. This can be directly encoded into SMT as seen in Figure 4.6, along
the four constraint types introduced above. Note that reads and writes are not encoded
via ΦCDF, as that will be taken care of by the memory model. Also note that a general
solution could not use the xor function to encode the successor constraint, as more than
two successors are possible, and should use a combination of assertions ensuring that
exactly one successor is selected.

30

1 if (x < 0) {
2 if (x > 1) {
3 reach_error();
4 }
5 }
6 return;

(a) Example program

1 : IW (x,−1)

2 : R(i, x)

4: End 3 : R(j, x)

6: End 5: Err

[i < 0][!(i < 0)]

[j > 1][!(j > 1)]

(b) Memory events and po

(assert t1)

(c) Initial writes

(assert (=> t1 t2))
(assert (=> t2

(xor t3 t4)))
(assert (=> t3

(xor t6 t5)))

(d) Successors

(assert (=> t2 t1))
(assert (=> t3 t2))
(assert (=> t4 t2))
(assert (=> t5 t3))
(assert (=> t6 t3))

(e) Ancestors

(assert (=> t3 (< i 0)))
(assert (=> t4

(not (< i 0))))
(assert (=> t5 (> j 1)))
(assert (=> t6

(not (> j 1))))

(f) Assumptions

(g) ΦCDF encoding (SMT-LIB format)

Figure 4.6: Exploring the control and data flow of a single process

4.3.3 Encoding the Memory Model

Having encoded the control and data flow of the program, the accompanying memory
model must be encoded as well. Mathematically, the memory model serves as the meta-
model for the candidate execution graphs – therefore it can be encoded as constraints
over a labelled graph. To achieve this, a boolean constant can be introduced for each
pair of events in the control flow graph for every defined relation. Then, by imposing
constraints stemming from the memory model over these constants, the memory model
can be encoded over the specific program.
Consider the memory model in Figure 4.7a. It defines a simple rule, stating that a read
event cannot read from a po-previous source. This introduces a relation rf-same, and
a constraint no-int-read. Therefore, 6 ∗ 6 = 36 new constants are added to the SMT-
query, each corresponding to a tuple {source, target, relation}. Then, their values can be
constrained by the rules in the memory model such as no-int-read: in Figure 4.7b and
4.7c a few assertions can be seen that demonstrate this process. The conjunction of such
rules will give the memory model encoding ΦMCM.
Note that based on the architecture of the memory model, a single rule can be broken up
into multiple sub-rules. For example, the rule

let rf-sibling = (rf^-1; rf)\id (4.1)

can be broken up into

let rule1 = (rf^-1; rf)
let rf-sibling = rule1\id.

(4.2)

31

let rf−same = rf & po
empty rf−same as no−int−read

(a) Simple memory model

(assert (iff rf−same_1_1
(and rf_1_1 po_1_1)))

(assert (iff rf−same_1_2
(and rf_1_2 po_1_2)))

...

(b) rf-same encoding

(assert (not (or
rf−same_1_1
rf−same_1_2
...
rf−same_6_6)))

(c) no-int-read rule

Figure 4.7: Encoding the memory model

While this effectively multiplies the number of relations (and hence, constants) in the
SMT-formula, the rules and hence the implementation can be much simpler.
Note that the built-in relations po, int, ext, etc. need to be explicitly encoded. Beside rf
and co, all built-in relations are clearly defined after exploration, and therefore their values
can directly be encoded into ΦMCM. It is important to define all relation instances as either
true or false, because their values are grounded in the semantics of the program, rather
than that of the memory model – and the SMT-solver should not receive an ambiguous
input in this context.
The last element of the memory model encoding is the equality constraint among reads
and writes of the same rf edge. This will enforce that if a read-from edge is chosen to be
included in the execution graph, the read actually receives its value from the corresponding
write.

4.3.4 Enumerating Solutions

To enumerate the solutions to the verification problem, first the error property ΦErr has
to be encoded. This is, however, easy in the case of reachability: if the property is some
data state then encode it directly, and if it is location reachability, assert that the violating
location is included in the trace (ti is true). With this, Φ can be constructed, and the
SMT-solver can be queried. Then, while there is a satisfying model to Φ, new solutions
can be found by adding the negated conjunction of all rf -relations – which will surely
produce new consistent executions, until such constructs exist.
In the case of the program in Figure 4.6a and the empty memory model, some satisfying
solutions can be found in Figure 4.8.

4.4 Encoding Well-Formedness Constraints

Notice the problem with Figure 4.8. There are reads which read from nothing, i.e., are
equivalent to havocs. This is due to the lack of constraints over the well-formedness of
the generated relations rf and co. This is problematic, because their semantics are lost
during the transformation from memory model to execution graph – and the solution is
to introduce a standard library of rules and constraints that always govern their behavior.
A commonly used relation will be the both-in-trace relation, defined by the following
rule:

let both-in-trace = T ∗ T (4.3)

32

1 : IW (x,−1)

2 : R(i, x)

4: End 3 : R(j, x)

6: End 5: Err

[i < 0][!(i < 0)]

[j > 1][!(j > 1)]

rf

(a) First solution

1 : IW (x,−1)

2 : R(i, x)

4: End 3 : R(j, x)

6: End 5: Err

[i < 0][!(i < 0)]

[j > 1][!(j > 1)]

(b) Second solution (not rf_1_2)

Figure 4.8: Consistent executions of Figure 4.6a over Figure 4.7a
(grayed out parts are not in-trace)

where T denotes the in-trace relation from earlier. Using this relation, it can be ensured
that rf and co relations must only span among in-trace events:

empty rf \ both-in-trace as rfMustBeChosen
empty co \ both-in-trace as coMustBeChosen

(4.4)

Next, we need to constrain the domain of the two relations. We know that co edges span
between writes only, while rf edges will only go from writes towards reads:

empty rf \ (W ∗R) as rfOnlyBetweenWriteRead
empty co \ (W ∗W) as coOnlyBetweenWrites

(4.5)

Furthermore, we know that both relations only target same-location variables:

empty rf \ loc as rfReadsSameVar
empty co \ loc as coForSameVar

(4.6)

We also know that each read event has at most one rf edge:

empty (rf; rf^-1) \ id as onlyOneRfPerRead (4.7)

Furthermore, each read event has at least one rf edge:

empty (R&T) \ range(rf) as everyReadReads (4.8)

And finally, we know that co relations form a total order over each location and initial
writes are always ordered-before regular writes:

empty ((IW ∗W) & loc & both-in-trace) \ id \ co as coInitialFirst
empty ((W ∗W) & loc & both-in-trace) \ id \ co \ co^-1 as coTotalOrder0

empty co as coTotalOrder1
(4.9)

33

let both−in−trace = (T ∗ T)

empty rf \ both−in−trace as rfMustBeChosen
empty co \ both−in−trace as coMustBeChosen

empty rf \ (W ∗ R) as rfOnlyBetweenWriteRead
empty rf \ loc as rfReadsSameVar
empty (rf; rf^−1)\id as onlyOneRfPerRead
empty (R & T) \ range(rf) as everyReadReads

empty co \ (W ∗ W) as coOnlyBetweenWrites
empty co \ loc as coForSameVar
empty ((IW ∗ W) & loc & both−in−trace) \ id \ co as

coInitialFirst
empty ((W ∗ W) & loc & both−in−trace) \ id \ co \ co^−1

as coTotalOrder0
acyclic co as coTotalOrder1

Figure 4.9: stdlib.cat well-formedness constraints

1 : IW (x,−1)

2 : R(i, x)

4: End 3 : R(j, x)

6: End 5: Err

[i < 0][!(i < 0)]

[j > 1][!(j > 1)]

rf

rf

Figure 4.10: Only solution

A summary of these well-formedness constraints can be seen in Figure 4.9.
Using this, the program in Figure 4.6a can be classified as SAFE over the empty memory
model, as no execution exists that leads to the error state. The only consistent execution
(minus the error property) is given in Figure 4.10.

4.5 Providing a User Interface

Currently, Theta mainly supports litmus tests as the source for concurrent programs.
It also has support for parsing C programs via the above mentioned C frontend, but
the higher abstraction level of C hinders exact reasoning over its memory accesses, and
therefore the proof-of-concept implementation focuses on litmus tests instead, which can
be translated almost verbatim. Note that this is not a limitation of the proposed approach,
but purely an implementation-specific one.
To verify a litmus test with respect to a certain memory model, Theta provides the
already mentioned tool litmus-cli. It is a command line tool that provides the following
configuration switches:

• --cat: the path to the input memory model

• --litmus: the path to the input litmus test

• --loglevel: the detailedness of the standard output

• --print-xcfa: dump the parsed XCFA as a .dot file for Graphviz visualization

• --smt-home: the path to the SMT home directory where solvers are installed (dee
[22])

• --solver: the SMT solver’s name and version to be used

• --visualize: visualize the consistent execution graphs

34

Figure 4.11: Graphical interface of the litmus-cli frontend

The last option, --visualize, will open a graphical window that shows an interactive
execution visualization (see Figure 4.11). On the top, there is a drop-down that lets the
user choose a solution to visualize. On the left, each checkbox corresponds to a relation or
event set in the memory model, and by selecting some of them, they will be drawn on the
graph. By default, only the 3 main event sets (Writes, Reads, Fences) and the rf -relation
is visible.

4.6 Verifying the Implementation

To verify the implementation, I ran a selection from the litmus tests provided by Dartag-
nan5 to see if both Herd and Theta produce the same results. In particular, I was
interested in the number of consistent execution graphs the two tools produce.
I ran tests on 50 arbitrarily chosen litmus tests that had a diverse set of features among
them (varying numbers of processes, labels, arithmetic- and branching instructions, etc.).
Herd sometimes reported a higher number of executions than Theta, as some co-orders
influenced the final memory state and therefore Herd enumerated all total orders; while
Theta concentrated only on the rf relation (as it was expected). Besides this discrepancy,
no further differences were found between the two tools, meaning the proof-of-concept im-
plementation is most likely free of any serious bugs – although, of course, exact correctness
could not be ensured using only testing.

5https://github.com/hernanponcedeleon/Dat3M

35

https://github.com/hernanponcedeleon/Dat3M

Chapter 5

Abstraction-Based State Space
Exploration over Declarative
Semantics

As mentioned before, the implemented algorithm in Chapter 4 is not capable of verifying
programs containing loops. The main reason is the naive exploration of transitions from
any given state – only the location is taken into account using the labelled transition
system (LTS) implementation of the formalism. To fix this, more established tools (such
as Dartagnan [21]) will use a loop unrolling method to get the necessary representation,
but the technical obstacle remains the same.
In this chapter, I propose a novel, CEGAR-like extension to the demonstrated approach,
which should solve the problem of unbounded loops as well as handle any input more
efficiently.

5.1 High-Level Overview

The main shortcoming of the SMT-based naive algorithm is the not taking data states
into account when choosing possible transitions. For example, consider the program in
Figure 5.1a: it contains a useless loop that will only execute once, and therefore the only
enabled transition from the body of the loop should be its exit transition (see Figure 5.1b).
However, we only know this if we pay attention to the value of x – and without that infor-
mation, we must take all outgoing transitions into account, thereby creating an iteratively
expanding state space (see Figure 5.1c).
However, if we take all variables and all their values into account, the state space will
explode. A conventional solution to that is abstraction, and one its most widespread
application to software verification is Counterexample-Guided Abstraction Refinement
(CEGAR) [18]. However, applying abstraction over declarative semantics is tricky, because
the standard way of state space exploration must be adapted.
The key idea behind applying CEGAR to declarative semantics is the use of multiple,
co-operating abstract reachability graphs (ARG) [13], one per thread (or participant, pro-
cess, etc.). Every thread builds its own ARG as a conventional, single-threaded program
would, with the exception to memory accesses. With those, it also builds a global abstract
execution graph, which will guide the rf -edges constraining the dataflow, as well as add
them as havoc (in the case of reads) or no-op (in the case of fences and writes) statements

36

1 int x = 0;
2 while(x<1)
3 ++x;
4 assert(x == 1);

(a) Bounded loop

L1, x =?

L2, x = 0

L3, x = 0

L2, x = 1

L4, x = 1

End, x = 1

x := 0

[x < 1]

x := x+ 1

[!(x < 1)]

[x == 1]

(b) Concrete state space

L1

L2

L3

L2

L4

End Err

L3

L2

L4

End Err

…

x := 0

[x < 1]

x := x+ 1

[!(x < 1)]

[x == 1] [x! = 1]

[x < 1]

x := x+ 1

[!(x < 1)]

[x == 1] [x! = 1]

[x < 1]

(c) BMC over a loop

Figure 5.1: Demonstrating the problem with handling loops in a bounded setting

1 f0 = 1 ; | f1 = 1 ;
2 t = 1 ; | t = 0 ;
3 while (t && f1) | while (! t && f0)
4 { } | { }
5 assert (! c r i t) ; | assert (! c r i t) ;
6 c r i t =1; | c r i t =1;
7 c r i t =0; | c r i t =0;
8 f0 = 0 ; | f1 = 0 ;

Figure 5.2: Peterson’s algorithm

Initial
precision

Abstractor Refiner

ARG #1
...

ARG #N

GExecutionSafe Unsafe

Abstract counterexample

Refined precision

Expand Prune

Build Check

Figure 5.3: The declarative CEGAR loop

to the ARG of their executing thread. When an error state is discovered, all of the ARGs
must be encoded into a single SMT-formula, and together with the abstract execution
graph, an SMT-solver can be used to check for satisfiability and thereby reachability. If
the error state is unreachable, a refutation can be used to refine the abstraction precision
of each thread, and the state space exploration can restart. If no error state is reachable
in the ARG, we can conclude safety. This workflow is summarized in Figure 5.3.

5.2 Representative Example

To demonstrate how the proposed approach works, I shall verify the program in Figure 5.2
(Peterson’s algorithm [36]) over SC using its methodology. Note that some details might be
left out to preserve conciseness, but a formalization of the steps is available in Section 5.3.
Let the initial precision for this verification run be and empty explicit-valued precision.
With this, we construct the abstract reachability graph for each thread, as seen in Fig-
ure 5.4. Note the covering edges that link partially ordered-before states to their successors

37

L1

L2

L3 L3’ L3”

L3 L5

L5’Err

L6

L7

L8

End

W (f0, 1)

W (t, 1)
R(i, t)

R(j, f1)

[i&&j] [!i||!j]

R(c, crit)

[!c]
[c]

W (crit, 1)

W (crit, 0)

W (f0, 0)

(a) Thread 1

L1

L2

L3 L3’ L3”

L3 L5

L5’Err

L6

L7

L8

End

W (f1, 1)

W (t, 0)
R(i, t)

R(j, f0)

[i&&!j] [!i||j]

R(c, crit)

[!c]
[c]

W (crit, 1)

W (crit, 0)

W (f0, 0)

(b) Thread 2

Figure 5.4: ARGs of Figure 5.2

W (f0, 1)

W (t, 1)

R(i, t)

R(j, f1)

R(c, crit)

W (crit, 1)

W (crit, 0)

W (f0, 0

W (f1, 1)

W (t, 0)

R(i, t)

R(j, f0)

R(c, crit)

W (crit, 1)

W (crit, 0)

W (f0, 0

Figure 5.5: Events of Figure 5.4

(which, in this case, is only location-dependent). Also note that some edges contain a num-
bered memory event – this is how the algorithm encodes the abstract execution graph of the
multi-threaded program (the corresponding po-graph can be seen in Figure 5.5). As these
ARGs allow the error state to be reached, an abstract counterexample can be constructed
from them – for this, let us choose the first thread’s error location.
In a conventional, single-threaded CEGAR loop, an abstract counterexample is a trace,
i.e., a list of alternating states and transitions. As in a multi-threaded setting the states
might be influenced by the global state, we must take the entire ARG of every other thread
into account, and provide the counterexample as a reached node in the form of the in-trace
(T) relation. This is added to the execution graph’s specification via a specially tagged
event.
The refiner needs to first check whether the counterexample is concretizable, i.e. if a
consistent concrete execution allows the same state to be reached. To do this, it performs
the same process as the algorithm in Chapter 4 for checking if a consistent execution can
be produced – in which case, it reports this as a counterexample. If no such execution can
be produced however (as is the case for Figure 5.4), it needs to produce a refutation why
it is not possible. One option is to use interpolation, a feature provided by SMT-solvers,
to find where the execution goes wrong. With this, a new precision can be created that
holds all the variables we need to track in the next iteration of CEGAR. In this case, the
new precision can be an explicit-valued precision containing the following variables:

1. The local variable c from the first thread

2. The global variable crit

With this precision, new ARGs must be built. The prefix to the R(c, crit) instruction re-
mains the same on both threads, but the further process differs. Because the crit variable

38

1

2

3

L1

L2

L3 L3’ L3”

L3

L5

L5’,c = 0

L6,c = 0

L7,c = 0

L8,c = 0

End,c = 0

L5’,c = 1

Err

L5’,c = 0

W (f0, 1)

W (t, 1)
R(i, t)

R(j, f1)

[i&&j]

[!i||!j]

R(c, crit)

R(c, crit)

R(c, crit)

[!c]

W (crit, 1)

W (crit, 0)

W (f0, 0)

[c]

(a) Thread 1

Figure 5.6: ARGs of Figure 5.2

IW (crit, 0)

1

23

W (f0, 1)

W (t, 1)

R(i, t)

R(j, f1)

R(c, crit)

R(c, crit)

R(c, crit)

W (crit, 1)

W (crit, 0)

W (f0, 0

W (f1, 1)

W (t, 0)

R(i, t)

R(j, f0)

R(c, crit)

W (crit, 1)

W (crit, 0)

W (f0, 0

Figure 5.7: Events of Figure 5.6

is in the precision, we cannot handle a read from this variable as a havoc (because that was
the erroneous over-approximation last time). Instead, we must put the read event into a
collection of so-called revisitable reads, (inspired by Rcmc [32]), and explore every possible
combination of existing write-read combination as a potential rf -edge. Furthermore, all
successive additions of write events must try to supply a value to all revisitable reads.
The transfer function must also be instructed to take the source writes’ states into account
when calculating the resulting state. This process can be seen in Figure 5.6. Note how
the resulting state of L5 changes based on where it received a value from (the different
rf -edges are depicted in Figure 5.7).
With this new ARG, we can produce an abstract counterexample once again, which will
not be concretizable. If in the next iteration we take all variables into account (where
the verification is headed), we will find that it is impossible to reach the error state, and
therefore we can conclude that Peterson’s algorithm works for mutual exclusion.

5.3 Formalization

In this section, I formalize algorithms and data structures of the proposed approach.

39

5.3.1 Data Structures

The algorithms mainly work on a single data structure, the one holding the ARGs and the
memory events. This can be formalized as a tuple MultiARG = (IW,ARGs,Relations),
holding a collection of initial write events, an associative array of ARGs (keyed with unique
process IDs), as well as elements to the unary- and binary relations defined by the memory
model. Each ARG is a node- and edge-labelled, directed graph G(V,E, lv, le), where:

• V : vertices

• E ⊆ V × V : edges

• lv : V → S: vertex labeling function, evaluating to a state

• le : E → (A ∪ {R,W,F}): edge labeling function, evaluating to either an action or
a memory event (read, write or fence)

States and actions are formalism-dependent, but both should be evaluable to SMT-
expressions. Memory events need to hold the following information:

• Read: unique ID, local variable, global variable, ordering primitive (tag)

• Write: unique ID, local variable, global variable, ordering primitive (tag)

• Fence: unique ID, ordering primitive (tag)

Relations are stored as collections of elements for positive and negative facts. With no
stored fact, a given element is considered unknown, i.e., it may be true. The mapping of
memory events to atoms in relations are given by the events’ unique ID.

5.3.2 Algorithms

The algorithm follows a regular CEGAR loop, with a few modifications. This section
mainly focuses on these modifications, but I also present some of the details from the
conventional algorithm as to provide a clearer picture for how the proposed approach
works.

5.3.2.1 Overview

On the highest level, the algorithm expects an initial precision, an XCFA and a memory
model. Then, in a loop, it will create a MultiARG from the program over the memory
model with the given precision, and report safety if no error state is reachable. Otherwise,
it creates a counterexample and tries to concretize it. If it succeeds, the program is unsafe;
and if it fails, a new precision is created that forbids the same spurious counterexample
to be generated in the future, and the loop can start over again.

40

Algorithm 1: CEGAR loop
input : InitPrec
input : XCFA
input : MCM
output: SafetyResult

1 RunningPrec ← InitPrec;
2 while true do
3 MultiARG ← Abstract (RunningPrec, XCFA, MCM);
4 if Safe(MultiARG) then
5 return Safe
6 else
7 CEx ← ExtractCex(MultiARG);
8 if Conretizable(CEx, MultiARG, MCM) then
9 return Unsafe

10 else
11 RunningPrec ← Refine(CEx, MultiARG, MCM);
12 end
13 end
14 end

5.3.2.2 Abstract

The Abstract function takes as inputs a precision, an XCFA and a memory model, and
creates a MultiARG.

Algorithm 2: Abstract: Abstraction of an XCFA with a given precision
input : Prec
input : XCFA
input : MCM
output: MultiARG

1 MultiARG ← (InitialWrites, {Initialize (ARG0), …}, InitialRelations);
2 WaitSet ← {InitialStates};
3 Reads ← {};
4 Writes ← {};
5 for s ∈ InitialStates do
6 Transitions ← Successors (s);
7 for t ∈ Transitions do
8 if Var (t) ∈ Prec then
9 (WaitSet, Reads, Writes) ← HandleMemoryEvent (t, WaitSet, Reads,

Writes);
10 else
11 NewStates ← TransFunc (s, t);
12 MultiArg ← MultiArg + NewStates;
13 WaitSet ← WaitSet∪NewStates;
14 end
15 end
16 end
17 return MultiARG

41

Algorithm 3: HandleMemoryEvent: Handling an in-precision memory event
input : Transition
input : WaitSet
input : Reads
input : Writes
output: (NewWaitSet, NewReads, NewWrites)

1 if Type (Transition) == Read (as r) then
2 NewReads ← Reads∪{r};
3 NewWaitSet ← WaitSet;
4 for w ∈Writes[var == var(r)] do
5 NewWaitSet ← NewWaitSet∪ReadsFrom(w,r);
6 end
7 return (NewWaitSet, NewReads, Writes);
8 else if Type (Transition) == Write (as w) then
9 NewWrites ← Writes∪{w};

10 NewWaitSet ← WaitSet;
11 for r ∈ Reads[var == var(w)] do
12 NewWaitSet ← NewWaitSet∪ReadsFrom(w,r);
13 end
14 return (NewWaitSet, Reads, NewWrites);
15 else
16 return (WaitSet, Reads, Writes);
17 end

5.3.2.3 ExtractCex

As mentioned above, the counterexample to the verification problem is an in-trace event
in an error state. Given the MultiARG, this is trivial to compute (traverse all ARGs, find
one state that violates the safety property, and report the counterexample).

5.3.2.4 Concretizable

This sub-algorithm is explained in-detail in Chapter 4 and therefore I will not reiterate
it here. Note that it does not matter that we use an abstract view in the ARGs, as the
concretizer will have to work with the actual statements and relations.

5.3.2.5 Refine

Refining the precision is hard to generalize, because of the many different approaches. For
some of the possibilities, see the technical paper of Theta [28]. The main difference from
conventional refinement demonstrated in that paper stems from the use of memory models,
which cause encoded relations to show up in the interpolant – the refinement algorithm
needs to be aware of this caveat, and add the impacted variable to the precision.

42

Declarative CEGAR

- pids: int[1..*]

- initialWrites: Write[0..*]

Solver

MCM

«interface»
MemoryEventProvider

+ getPiecewiseAction(a: Action, s: State): Action[1..*]

+ getVarId(var: VarDecl): int[1..*]

MultiprocLTS

+getActionsFor(pid: int, s: State)

«interface»
LTS

+getActionsFor(s: State)

XCFA

State

Action

XcfaProcessState

XcfaProcessAction

XcfaMemoryEventProvider

XcfaProcessLTS

[1..*]

MultiprocTransferFunction

+getSuccStates(pid: int, s: State, a: Action, p: Prec)

«interface»
TransFunc

+getSuccStates(s: State, a: Action, p: Prec)
[1..*]

MultiprocInitFunction

+getInitStates(pid: int, p: Prec)

«interface»
InitFunc

+getInitStates(p: Prec)

XcfaProcessTransFunc

XcfaProcessInitFunc

Figure 5.8: Summary of the implementation

5.4 Proof of Concept Implementation

As demonstrated by the example in Section 5.2, the most complicated parts of the proposed
approach are:

1. the abstract state space exploration with a given precision; and

2. the concretization process.

Therefore, I implemented these parts in Theta, as a preparation to realizing a fully
functional CEGAR loop using Theta’s toolset and the presented new algorithm (which
is out of the scope of this thesis).
The implementation uses a number of wrapper objects that give access to formalism-
specific elements of the input program. This is summarized in Figure 5.8, with elements
differing from Figure 4.5 highlighted. These elements are:

1. Transfer function: given a state, an action and a precision, enumerate all successor
states

2. Init function: given a precision, enumerate all initial states

As a fully automatic abstraction refinement process has not yet been implemented, exten-
sive evaluation of the process is not yet feasible. This implementation has mainly been a
guide to understand and optimize the ARG building process, for which I used the same
testing suite as in Chapter 4 with differing levels of precision, both from the cartesian
predicate and the explicit domain. So far, all preliminary tests have shown that the im-
plementation is sound, as no false negatives have been found (which would be the telltale
sign of a badly-designed abstraction, due to the lack of over-approximation).

43

Chapter 6

Applying Memory Models on
Communication Protocols

So far, the main focus has been put on variable read and write accesses. This is the
standard model for different processor cores communicating with each other through a
shared memory area, and the memory models have mainly concentrated on this process.
However, if we want to model communication among participants of a distributed system,
we must redefine these terms to better suit our needs. In this chapter, I explore the
expansion of memory modeling concepts to commonly used communication protocols such
as UDP and TCP, which could serve as the basis of many, more complex protocols.

6.1 Defining the Scope

Throughout this chapter, the standard model for communication can be seen in Fig-
ure 6.1a. Several devices are communicating via some sort of network, where participants
can either send or receive data. This standard model can be extended with further el-
ements, such as topics (as seen in Figure 6.1b), which restrict the pairings of sent and
received data; or Quality of Sevice (QoS) settings that govern how each topic (or seg-
ment) behaves in terms of message handling (as seen in Figure 6.1c).
Note that while different protocols will define different send and receive semantics (such
as publish/subscribe, broadcast and direct communication, etc.), those details will be
encoded in their memory model, rather than defining separate standard models for every
scenario. In Section 6.4, I will be exploring the applicability of this approach to show that
it does not constrain the communication protocols in this way.

6.1.1 Communication Behavior Patterns

When it came to shared memory communication, the reordering of memory accesses was
the main source of complexity. For network communication, however, multiple times of
problems can occur:

• Two messages were sent in one order, but observed in another by at least one receiver

• A single message was sent, but multiple messages were received with identical con-
tents

44

send receive

Network

(a) Simple send/receive model

topic1 topic2

send
receive

(b) Send/receive model using topics

topic1 topic2

send
receiveNo reordering

Duplication
 ...

Reordering
No duplication
No lost message
 ...

(c) Send/receive model using topics with different QoS settings

Figure 6.1: Models of distributed communication

• A message was sent, but no-one received it

Note that the last two problematic events are normal when we talk about memory accesses,
but might be unusual and/or unwanted when network communication is used. Based on
this and similar observations, the list of behavior patterns to model in the context of this
thesis is the following:

1. Reordering: does the reception of messages follow some total order by all partici-
pants?

2. Duplication: can multiple receptions by the same participant occur from a single
sent message?

3. Reliability: is the reception of a sent message guaranteed?

4. Broadcasting: can multiple participants receive a single sent message?

5. Sending synchronicity: can a participant issue new events before a sent message is
received?

6. Blocking reception: can a participant receive from nowhere, or will all receive in-
structions block?

6.2 Modeling Behaviour Patterns

To model the previously established patterns, I used my proof-of-concept implementation
of a memory model based verification tool introduced in Chapter 4. Note however, that

45

I did not use the well-formedness constraint concerning the rf -relation’s mandatory exis-
tence for each read established in Equation 4.8, as that was mainly true for shared memory
applications. The other ones still hold. Also, an added requirement is that no read shall be
able to receive the value written by an initial write – that concept is generally not present
in message-based system. For this, we need to include the following in stdlib.cat:

empty rf & (IW ∗R) as noIW (6.1)

In this section, I create easily pluggable memory modeling constructs in the form of a
standard library for message-based communication, which is realized by two Cat models
per pattern (one negative and one positive). These files help with the rapid prototyping
and evaluation of communication protocols, by making it possible to include them and
therefore enforce or forbid their contents.

6.2.1 Reordering Messages

The reordering of events is a problem both concurrent software and distributed systems
observe. With no reordering, we expect all rf edges to conform to a strictly sequential
execution – which can be achieved using the following memory model constraint:

let fr = (rf^-1 ; co) \id
acyclic (po | co | rf | fr) as sc

(no-reordering.cat)

If a protocol wants to allow reordering, we still need to pay attention to causality – meaning
a previous reception should never read a value published by a later send. With no other
constraint, this can be realized by disallowing cycles in the po and rf relations:

acyclic (po | rf) as causality (causality.cat)

Of course, finer control over reordering messages can be expressed using Cat – but that
problem is well-covered by the conventional memory modeling of concurrent programs [7].

6.2.2 Duplicating Messages

With concurrent software, it is not unusual to have a write’s value passed to multiple
reads – if that value is in-memory, any number of read might receive it. However, with
message-based communication, each message is restricted to be received once in most cases
(either globally, or by participant). To model global uniqueness using Cat, the following
construct can be used:

empty (rf^-1; rf) \ id as noDup (global-no-dup.cat)

This rule can be relaxed by allowing each participant to read the value once:

empty (rf^-1; rf) \ id \ int as intNoDup (participant-no-dup.cat)

If duplication should be allowed, no constraint is necessary – this is the most relaxed
model.

46

6.2.3 Losing Messages

By default, it is not forbidden for writes to be lost, i.e., have no associated rf -edge. It
might be required, however, that all messages must be received by at least one participant,
for example in the case of TCP: a send operation cannot be considered successful, if no-
one received (and acknowledged) it. This requirement can be formalized in the following
constraint:

empty (W&T) \ domain(rf) as noSendLost (no-loss.cat)

6.2.4 Broadcasting Messages

To further constrain the execution seen in no-loss.cat, it can also be a requirement that
all other participants must receive a value from a particular write:

let rf-int = rf; int
empty ((W&T) ∗ (R&T)) & ext \ rf \ rf-int as allMustReceive

(broadcast.cat)

6.2.5 Sending Synchronously

Some protocols require all send operations to find all its respective receive operation(s) be-
fore proceeding with execution. This is called synchronous messaging, while asynchronous
refers to the case where the value is committed to some sort of distributed memory, and
any reception can receive it later. Normally, concurrent programs are asynchronous and
therefore no extra constraint has to be placed over such executions, but synchronicity
requires the use of the following construct:

let fr = (rf^-1 ; co) \id
let po-com = po | co | rf | fr

let po-com-chain = po-com∗ \ rf
empty (rf | rf^-1) & po-com-chain as allRWCoincide

(synchronous.cat)

6.2.6 Blocking Reception

Normally, a memory operation could never fail, as the value in the memory is always
established. However, in the case of network communication, it is possible to receive
nothing as the result of an attempted reception. In this case, the implementation might
block and wait for a valid value, which is handled implicitly by not modeling any timing
information (and therefore arbitrary time differences are allowed among any two events).
They also might just fail and continue execution normally (with possibly a random value
as their received payload). This is modelled by not including the rf -related constraints
from Equation 4.8, and their counterpart (i.e., no read shall return without receiving a
value) need the following rules:

empty (R&T) \ range(rf) as everyReadReads (blocking.cat)

47

However, even in the non-blocking case, it might be necessary to enforce that a reception
can only be ignored if no suitable write exists. To do this, we first have to calculate
potential rf -edges, then assert that if a read has one, than it also needs to have an actual rf -
edge. However, this is impossible to do generally, as the rf edge can be constrained in any
number of ways. Therefore, we expect the user to provide a function called illegal_rf(),
which will provide the necessary constraints:

let pot-rf = (W ∗R) & loc \ illegal_rf()

empty range(pot-rf) \ range(rf)
(no-ignored-write.cat)

6.3 Extending the Standard Model

As mentioned above and show in Figure 6.1, the standard model can be extended with
topics, QoS settings, etc. So far, to encode the send and receive events, the write and read
constructs were used, all writing a single global variable. If topics are to be used, each
topic can correspond to a different shared variable. Furthermore, each segment of the
network under different QoS settings can be either tagged if the send/receive events are
influenced, or be placed in a sr (scope) relation [7] that influences the applicable rules.
Note that having topics is not that exotic of a behavior. For many protocols, the commu-
nication is point-to-point, i.e., the sender sends its message to an addressee. In this case,
each topic
Notice that the modeled patterns above use the rf, po, etc. relations directly, while due
to scoping, some rules might be differently applied to different parts of the execution.
To solve this, all rules above are placed inside procedures, which receive these relations
indirectly as parameters. For example, the rule (no-loss.cat) will look like this:

procedure no-loss(W, T, rf) =

empty (W&T) \ domain(rf) as noSendLost (no-loss.cat)
end

6.4 Applicability of the Approach

To see how well the above presented approach works, I model a few real-life protocols and
show how they behave. Throughout this section, it is important to keep in mind that
the proposed approach is declarative, i.e., the effects of the communication protocols are
modeled, not their exact behaviour or implementation.

6.4.1 User Datagram Protocol (UDP)

UDP is a simple, ”no-guarantees”, point-to-point or point-to-multipoint communication
protocol. It allows reordering, duplication and message loss as well. We assume that the
received messages are not erroneous (or are detected and discarded, which case is handled
under message loss). In this example, I opted to used the point-to-point version.
Based on its guarantees, UDP needs the following patterns:

• Reordering, but causality

48

send (x , 1) | i = r e c e i v e (x)
send (x , 2) | send (x , i)
nop | j = r e c e i v e (x)

Figure 6.2: Litmus test

UDP

include ”causality .cat”
call causality(po, rf)

include ”blocking.cat”
call blocking(R, T, rf)

Figure 6.3: UDP memory model

W (x, 1)

W (x, 2)

R(i, x)

W (x, i)

R(j, x)

rf

rf

(a) Solution 1

W (x, 1)

W (x, 2)

R(i, x)

W (x, i)

R(j, x)

rf

rf

(b) Solution 2

W (x, 1)

W (x, 2)

R(i, x)

W (x, i)

R(j, x)

rf

rf

(c) Solution 3
W (x, 1)

W (x, 2)

R(i, x)

W (x, i)

R(j, x)

rf

rf

(d) Solution 4

W (x, 1)

W (x, 2)

R(i, x)

W (x, i)

R(j, x)

rf

rf

(e) Solution 5

W (x, 1)

W (x, 2)

R(i, x)

W (x, i)

R(j, x)

rf

rf

(f) Solution 6

Figure 6.4: Solutions to Figure 6.2 over 6.3

• Duplication

• Loss

• No broadcasting

• Asynchronous

• Reception is blocking

To showcase these properties, we would like to verify the safety of the litmus test in
Figure 6.2. To do this, I have created the memory model for UDP, seen in Figure 6.3,
which produced the solutions seen in Figure 6.4. It shows that the memory model works
as intended:

• Solution 2 shows duplication and loss

• Solution 4 shows reordering and asynchronous-ness

• No solution has been generated that contradicts causality, even though the second
participant could have read from its own future

49

send (x , 1) | i = r e c e i v e (x)
i = r e c e i v e (y) | send (y , i)
send (x , 2) | j = r e c e i v e (x)

Figure 6.5: Litmus test

W (x, 1)

R(i, y)

W (x, 2)

R(i, x)

W (y, i)

R(j, x)

rf

rf

rf

Figure 6.6: Solution to Figure 6.5 over 6.7

TCP

include ”no−reordering.cat”
call sc(rf , co, id, po)

include ”global−no−dup.cat”
call nodup(rf, id)

include ”no−loss.cat”
call noSendLost(W, IW, T, rf)

include ”synchronous.cat”
call sync(rf , co, id, po)

include ”blocking.cat”
call blocking(R, T, rf)

Figure 6.7: TCP model

• No solution has been generated that contradicts the blocking effect, as no read was
left without a corresponding rf -edge

Even though one test is not definitive proof that the memory model is perfect, the lack of
a contradiction is very promising.

6.4.2 Transmission Control Protocol (TCP)

In contrast to UDP, TCP is a very reliable, mainly point-to-point communication proto-
col. It guarantees that all sent messages are delivered, without reordering or duplication.
Therefore, it needs to follow the following patterns:

• No reordering

• No duplication

• No loss

• No broadcasting

• Synchronous

• Reception is blocking

The corresponding memory model can be seen in Figure 6.7. I could not use the same
litmus test as for UDP (Figure 6.2), as the mismatched number of send and receive events
would make it impossible to generate any solutions. Therefore, I used a similar litmus
test (see Figure 6.5) to generate consistent executions, which can be seen in Figure 6.6.
Notice that only a single execution was generated: this is because the strict rules of TCP
disallow any other execution. See Figure 6.8 for all the solutions that were eliminated by
its rules.
Consider the forbidden execution in Figure 6.8a. It would violate a number of patterns: it
loses the value of the last write (loss), there is a read that received no value (non-blocking),

50

W (x, 1)

R(i, y)

W (x, 2)

R(i, x)

W (y, i)

R(j, x)

rf
rf

(a) Forbidden solution 1

W (x, 1)

R(i, y)

W (x, 2)

R(i, x)

W (y, i)

R(j, x)

rf

rf

(b) Forbidden solution 2

W (x, 1)

R(i, y)

W (x, 2)

R(i, x)

W (y, i)

R(j, x)

rf
rf

(c) Forbidden solution 3

Figure 6.8: Some solutions to Figure 6.5 forbidden by 6.7

and it is not possible that the two pairs of read-write events occurred simultaneously (asyn-
chronous). In addition, Figure 6.8b shows duplication, and Figure 6.8c shows reordering
of events. This shows that the litmus test could produce forbidden results, but the con-
structed memory model (rightly) eliminates them.

51

Chapter 7

Conclusion

Formal software verification is a very relevant topic nowadays. More and more domains
require a formal proof of safety, as the price of failure is too high – from making sure
a space probe will never fail as maintenance is impossible, to power plants and aviation
endangering the lives of billions of people if not done properly, the need for a formal
method for finding and eliminating bugs is a growing trend.
In this thesis, my main focus has been on the efficient handling of weakly-ordered programs
and systems. In this case, the presumption that the order of events is governed only by the
order of lines in the source code is violated, and therefore most conventional techniques
fail to address it.
As my first contribution to this topic, I presented in this thesis a survey of the state of
the art regarding verification approaches handling parallelism, with a focus on the weakly
ordered case. I have shown that while some tools and algorithms exist, they fail to address
the problem of verifying unbounded inputs over a specific memory model.
To gain a deeper understanding of the problem, as well as to provide a technical platform
for further research, I implemented the most promising existing algorithm in Theta [40],
from the bounded model checker Dartagnan [21]. This has been my second contribution
of this thesis.
Based on the knowledge gained from the survey and the implementation, I proposde an
approach that combines abstraction (a strong-suit of Theta) with axiomatic memory
models to provide a way of handling infinite-state programs over declarative semantics.
My third contribution consists of this theoretical proposal, as well as the proof-of-concept
implementation of the main parts of the algorithm.
Finally, as my fourth contribution, I extended the reach of memory modeling to the
field of distributed systems by providing a practical application of the memory modeling
language Cat [8] to message-based protocols, with a complete implementation for the
User Datagram Protocol (UDP) and the Transmission Control Protocol (TCP).
I think my contributions will help further shape the direction where axiomatic memory
modeling, and its formal verification are headed. I am planning on continuing this work,
first by providing a deeper integration of the proposed approach into conventional CEGAR,
and therefore enabling the rapid development of algorithms and configurations that work
well for this case. Furthermore, I am planning on pursuing the extensions of memory
modeling to other domains as well, where such constructs might help formal reasoning
tools handle their problems more efficiently.

52

List of Figures

2.1 Mapping a program to a CFA . 6
2.2 Bounded Model Checking example and limitations 7
2.3 The CEGAR loop . 8
2.4 An ARG . 8
2.5 The CEGAR workflow . 9
2.6 Advantages and disadvantages of the EXPL domain w.r.t. PRED_CART . 11
2.7 Candidate executions . 15
2.8 State space exploration based on naive interleaving semantics 16
2.9 POR-based state space of Figure 2.8a, using tuples of line numbers as lo-

cations (main thread executes first) . 17
2.10 Program verification based on declarative semantics 18

3.1 Herd’s input litmus test and the generated candidate executions 21
3.3 Exploring the program in Figure 3.2a . 22
3.4 Execution graphs generated by rcmc . 22
3.5 Comparison of related verification tools . 24

4.1 High-Level Architecture of Theta, focusing on the XCFA subproject 26
4.2 Class diagram of a subset of relations inside the XCFA representation . . . 27
4.3 Summary of new features in Theta . 28
4.4 MCM representation . 28
4.5 Class diagram of the necessary elements used in the algorithm 29
4.6 Exploring the control and data flow of a single process 31
4.7 Encoding the memory model . 32
4.8 Consistent executions of Figure 4.6a over Figure 4.7a (grayed out parts are

not in-trace) . 33
4.9 stdlib.cat well-formedness constraints . 34
4.10 Only solution . 34
4.11 Graphical interface of the litmus-cli frontend 35

5.1 Demonstrating the problem with handling loops in a bounded setting . . . 37

53

5.2 Peterson’s algorithm . 37
5.3 The declarative CEGAR loop . 37
5.4 ARGs of Figure 5.2 . 38
5.5 Events of Figure 5.4 . 38
5.6 ARGs of Figure 5.2 . 39
5.7 Events of Figure 5.6 . 39
5.8 Summary of the implementation . 43

6.1 Models of distributed communication . 45
6.2 Litmus test . 49
6.3 UDP memory model . 49
6.4 Solutions to Figure 6.2 over 6.3 . 49
6.5 Litmus test . 50
6.6 Solution to Figure 6.5 over 6.7 . 50
6.7 TCP model . 50
6.8 Some solutions to Figure 6.5 forbidden by 6.7 51

54

Bibliography

[1] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, et al. Optimal Dynamic Partial
Order Reduction. SIGPLAN Not., 49(1):373–384, January 2014. ISSN 0362-1340.
DOI: 10.1145/2578855.2535845.

[2] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, et al. Stateless Model
Checking for TSO and PSO. In Christel Baier and Cesare Tinelli, editors, Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 2015, volume
9035 of Lecture Notes in Computer Science, pages 353–367. Springer, 2015. DOI:
10.1007/978-3-662-46681-0_28.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, et al. Stateless
Model Checking for POWER. In Swarat Chaudhuri and Azadeh Farzan, editors,
Computer Aided Verification - 28th International Conference, CAV 2016, volume
9780 of Lecture Notes in Computer Science, pages 134–156. Springer, 2016. DOI:
10.1007/978-3-319-41540-6_8.

[4] Zsófia Ádám, Levente Bajczi, Mihály Dobos-Kovács, et al. Theta: portfolio
of CEGAR-based analyses with dynamic algorithm selection (Competition Con-
tribution). In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms
for the Construction and Analysis of Systems, TACAS 2022, volume 13244
of Lecture Notes in Computer Science, pages 474–478. Springer, 2022. DOI:
10.1007/978-3-030-99527-0_34.

[5] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial Orders for Efficient
Bounded Model Checking of Concurrent Software. In Natasha Sharygina and Helmut
Veith, editors, Computer Aided Verification - 25th International Conference, CAV
2013, volume 8044 of Lecture Notes in Computer Science, pages 141–157. Springer,
2013. DOI: 10.1007/978-3-642-39799-8_9.

[6] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial Orders for Efficient
Bounded Model Checking of Concurrent Software. In Natasha Sharygina and Helmut
Veith, editors, Computer Aided Verification, pages 141–157, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. ISBN 978-3-642-39799-8.

[7] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats: Modelling,
Simulation, Testing, and Data Mining for Weak Memory. ACM Trans. Program.
Lang. Syst., 36(2):7:1–7:74, 2014. DOI: 10.1145/2627752.

[8] Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the weak
consistency model specification language cat. CoRR, abs/1608.07531, 2016.

[9] Levente Bajczi, Zsófia Ádám, and Vince Molnár. C for Yourself: Comparison of Front-
End Techniques for Formal Verification. In 2022 IEEE/ACM 10th International

55

http://dx.doi.org/10.1145/2578855.2535845
http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-319-41540-6_8
http://dx.doi.org/10.1007/978-3-030-99527-0_34
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://dx.doi.org/10.1145/2627752

Conference on Formal Methods in Software Engineering (FormaliSE), 2022. DOI:
10.1145/3524482.3527646.

[10] Mark Batty, Scott Owens, Susmit Sarkar, et al. Mathematizing C++ concurrency. In
Thomas Ball and Mooly Sagiv, editors, 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, pages 55–66. ACM, 2011.
DOI: 10.1145/1926385.1926394.

[11] Dirk Beyer and Karlheinz Friedberger. A light-weight approach for verifying multi-
threaded programs with CPAchecker. Electronic Proceedings in Theoretical Computer
Science, 233:61–71, 2016. DOI: 10.4204/eptcs.233.6.

[12] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, et al. The software model checker
Blast. International Journal on Software Tools for Technology Transfer, 9(5-6):505–
525, September 2007. DOI: 10.1007/s10009-007-0044-z.

[13] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable soft-
ware verification: Concretizing the convergence of model checking and pro-
gram analysis. Computer Aided Verification, page 504–518, 2007. DOI:
10.1007/978-3-540-73368-3_51.

[14] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, et al. Software model checking via
large-block encoding. 2009 Formal Methods in Computer-Aided Design, 2009. DOI:
10.1109/fmcad.2009.5351147.

[15] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, et al. Bounded
model checking. Advances in Computers, page 117–148, 2003. DOI:
10.1016/s0065-2458(03)58003-2.

[16] Paul E. Black, Paul Ammann, and Wei Ding. Model checkers in software testing. U.S.
Dept. of Commerce, Technology Administration, National Institute of Standards and
Technology, 2002.

[17] James Bornholt and Emina Torlak. Synthesizing memory models from framework
sketches and Litmus tests. In Albert Cohen and Martin T. Vechev, editors, 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, pages 467–481. ACM, 2017. DOI: 10.1145/3062341.3062353.

[18] Edmund Clarke, Orna Grumberg, Somesh Jha, et al. Counterexample-guided abstrac-
tion refinement for symbolic model checking. Journal of the ACM, 50(5):752–794,
September 2003. DOI: 10.1145/876638.876643.

[19] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press,
1999.

[20] Edmund M. Clarke, William Klieber, Miloš Nováček, et al. Model checking and the
state explosion problem. Lecture Notes in Computer Science, page 1–30, 2012. DOI:
10.1007/978-3-642-35746-6_1.

[21] Hernán Ponce de León, Florian Furbach, Keijo Heljanko, et al. BMC with Memory
Models as Modules. In Nikolaj Bjørner and Arie Gurfinkel, editors, 2018 Formal
Methods in Computer Aided Design, FMCAD 2018, pages 1–9. IEEE, 2018. DOI:
10.23919/FMCAD.2018.8603021.

[22] Mihály Dobos-Kovács. On the verification of safety-critical embedded software sys-
tems. Master’s thesis, Budapest University of Technology and Economics, 2021.

56

http://dx.doi.org/10.1145/3524482.3527646
http://dx.doi.org/10.1145/1926385.1926394
http://dx.doi.org/10.4204/eptcs.233.6
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1109/fmcad.2009.5351147
http://dx.doi.org/10.1016/s0065-2458(03)58003-2
http://dx.doi.org/10.1145/3062341.3062353
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/978-3-642-35746-6_1
http://dx.doi.org/10.23919/FMCAD.2018.8603021

[23] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, et al. Software
verification using K-Induction. Static Analysis, page 351–368, 2011. DOI:
10.1007/978-3-642-23702-7_26.

[24] Cormac Flanagan and Patrice Godefroid. Dynamic Partial-Order Reduction for
Model Checking Software. In 32nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’05, page 110–121, New York, NY,
USA, 2005. Association for Computing Machinery. ISBN 158113830X. DOI:
10.1145/1040305.1040315.

[25] Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach, et al. BMC for Weak
Memory Models: Relation Analysis for Compact SMT Encodings. In Isil Dillig and
Serdar Tasiran, editors, Computer Aided Verification - 31st International Conference,
CAV 2019, volume 11561 of Lecture Notes in Computer Science, pages 355–365.
Springer, 2019. DOI: 10.1007/978-3-030-25540-4_19.

[26] Patrice Godefroid, Jan van Leeuwen, Juris Hartmanis, et al. Partial-order methods
for the verification of concurrent systems: an approach to the state-explosion problem,
volume 1032. Citeseer, 1996.

[27] Henning Günther, Alfons Laarman, and Georg Weissenbacher. Vienna verification
tool: IC3 for parallel software. Tools and Algorithms for the Construction and Analysis
of Systems, page 954–957, 2016. DOI: 10.1007/978-3-662-49674-9_69.

[28] Ákos Hajdu and Zoltán Micskei. Efficient Strategies for CEGAR-based Model
Checking. Journal of Automated Reasoning, 64(6):1051–1091, 2020. DOI:
10.1007/s10817-019-09535-x.

[29] Gerard J. Holzmann. Explicit-state model checking. Handbook of Model Checking,
page 153–171, 2018. DOI: 10.1007/978-3-319-10575-8_5.

[30] IEC 61508:2010. Functional safety of electrical/electronic/programmable electronic
safety-related systems. International standard, International Electrotechnical Com-
mission, April 2010.

[31] ISO/IEC 9899:201x. Programming languages — C. International standard, Interna-
tional Organization for Standardization, International Electrotechnical Commission,
December 2010.

[32] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, et al. Effective stateless
model checking for C/C++ concurrency. Proc. ACM Program. Lang., 2(POPL):
17:1–17:32, 2018. DOI: 10.1145/3158105.

[33] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Model checking for
weakly consistent libraries. In Kathryn S. McKinley and Kathleen Fisher, editors,
Conference on Programming Language Design and Implementation, PLDI 2019, pages
96–110. ACM, 2019. DOI: 10.1145/3314221.3314609.

[34] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, et al. Repairing Sequential Consis-
tency in C/C++11. In 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, page 618–632, New York, NY,
USA, 2017. Association for Computing Machinery. ISBN 9781450349888. DOI:
10.1145/3062341.3062352.

57

http://dx.doi.org/10.1007/978-3-642-23702-7_26
http://dx.doi.org/10.1145/1040305.1040315
http://dx.doi.org/10.1007/978-3-030-25540-4_19
http://dx.doi.org/10.1007/978-3-662-49674-9_69
http://dx.doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1007/978-3-319-10575-8_5
http://dx.doi.org/10.1145/3158105
http://dx.doi.org/10.1145/3314221.3314609
http://dx.doi.org/10.1145/3062341.3062352

[35] Brian Norris and Brian Demsky. A Practical Approach for Model Checking C/C++11
Code. ACM Trans. Program. Lang. Syst., 38(3), May 2016. ISSN 0164-0925. DOI:
10.1145/2806886.

[36] Gary L. Peterson. Myths about the mutual exclusion problem. Inf. Process. Lett., 12
(3):115–116, 1981. DOI: 10.1016/0020-0190(81)90106-X.

[37] Zvonimir Rakamaric and Michael Emmi. SMACK: Decoupling Source Language
Details from Verifier Implementations. In Armin Biere and Roderick Bloem, editors,
Computer Aided Verification - 26th International Conference, CAV 2014, volume
8559 of Lecture Notes in Computer Science, pages 106–113. Springer, 2014. DOI:
10.1007/978-3-319-08867-9_7.

[38] Susmit Sarkar, Peter Sewell, Jade Alglave, et al. Understanding POWERmultiproces-
sors. In Mary W. Hall and David A. Padua, editors, 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, pages 175–186.
ACM, 2011. DOI: 10.1145/1993498.1993520.

[39] Thomas N. Theis and H.-S. Philip Wong. The End of Moore’s Law: A New Beginning
for Information Technology. Computing in Science; Engineering, 19(2):41–50, 2017.
DOI: 10.1109/mcse.2017.29.

[40] Tamás Tóth, Ákos Hajdu, András Vörös, et al. Theta: a Framework for Abstraction
Refinement-Based Model Checking. In Daryl Stewart and Georg Weissenbacher, edi-
tors, 17th Conference on Formal Methods in Computer-Aided Design, pages 176–179,
2017. ISBN 978-0-9835678-7-5. DOI: 10.23919/FMCAD.2017.8102257.

[41] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, et al. TriCheck: Memory Model
Verification at the Trisection of Software, Hardware, and ISA. In Yunji Chen, Olivier
Temam, and John Carter, editors, 22nd International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2017, pages
119–133. ACM, 2017. DOI: 10.1145/3037697.3037719.

[42] Alan Mathison Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Journal of Math, 58:345–363, 1936.

58

http://dx.doi.org/10.1145/2806886
http://dx.doi.org/10.1016/0020-0190(81)90106-X
http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1145/1993498.1993520
http://dx.doi.org/10.1109/mcse.2017.29
http://dx.doi.org/10.23919/FMCAD.2017.8102257
http://dx.doi.org/10.1145/3037697.3037719

	Kivonat
	Abstract
	Introduction
	Background
	Safety-Critical Systems
	Formal Software Verification
	Bounded Model Checking (BMC)
	Counterexample-Guided Abstraction Refinement (CEGAR)
	A Generic CEGAR Loop
	CEGAR Configuration Options
	BMC Inside CEGAR

	Multi-Processor Architectures
	Memory Consistency Models
	Event Sets, Relations and Constraints

	Analysis of Multi-Threaded Programs
	Interleaving Semantics
	Declarative Semantics
	Multi-Threaded CFA

	State of the Art
	Sequentially Ordered Concurrency
	Weakly Ordered Concurrency
	Herd
	Rcmc
	GenMC

	Dartagnan

	SMT-Based Verification over Declarative Semantics
	Representing the Input Program
	Parsing C Programs
	Parsing Litmus Tests

	Representing the Memory Model
	Implementing the Core Algorithm
	Overview of the Approach
	Encoding Control and Data Flow
	Encoding the Memory Model
	Enumerating Solutions

	Encoding Well-Formedness Constraints
	Providing a User Interface
	Verifying the Implementation

	Abstraction-Based State Space Exploration over Declarative Semantics
	High-Level Overview
	Representative Example
	Formalization
	Data Structures
	Algorithms
	Overview
	Abstract
	ExtractCex
	Concretizable
	Refine

	Proof of Concept Implementation

	Applying Memory Models on Communication Protocols
	Defining the Scope
	Communication Behavior Patterns

	Modeling Behaviour Patterns
	Reordering Messages
	Duplicating Messages
	Losing Messages
	Broadcasting Messages
	Sending Synchronously
	Blocking Reception

	Extending the Standard Model
	Applicability of the Approach
	User Datagram Protocol (UDP)
	Transmission Control Protocol (TCP)

	Conclusion
	List of Figures
	Bibliography

